Skip to main content

A collection of deep learning architectures ported to the python language and tools for basic medical image processing.

Project description

PyPI - Downloads Contributor Covenant

ANTsPyNet

A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Based on keras and tensorflow with cross-compatibility with our R analog ANTsRNet.

Documentation page https://antsx.github.io/ANTsPyNet/.

ANTsXNetTools

For MacOS and Linux, may install with:

pip install antspynet

Architectures

Image voxelwise segmentation/regression

Image classification/regression

Object detection

Image super-resolution

Registration and transforms

Generative adverserial networks

Clustering

Applications

Related


Installation

  • ANTsPyNet Installation:
    • Option 1:
      $ git clone https://github.com/ANTsX/ANTsPyNet
      $ cd ANTsPyNet
      $ python setup.py install
      

Publications

  • Nicholas J. Tustison, Michael A Yassa, Batool Rizvi, Andrew J. Holbrook, Mithra Sathishkumar, James C. Gee, James R. Stone, and Brian B. Avants. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. (medrxiv)

  • Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magnetic Resonance in Medicine, 86(5):2822-2836, Nov 2021. (pubmed)

  • Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, Academic Radiology, 28(11):1481-1487, Nov 2021. (pubmed)

  • Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports. 11(1):9068, Apr 2021. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, Magnetic Resonance Imaging, 64:142-153, Dec 2019. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, Academic Radiology, 26(3):412-423, Mar 2019. (pubmed)

  • Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS One, 13(9):e0204071, Sep 2018. (pubmed)

  • Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY doi

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

antspynet-0.2.2.tar.gz (135.0 kB view details)

Uploaded Source

Built Distribution

antspynet-0.2.2-py3-none-any.whl (180.9 kB view details)

Uploaded Python 3

File details

Details for the file antspynet-0.2.2.tar.gz.

File metadata

  • Download URL: antspynet-0.2.2.tar.gz
  • Upload date:
  • Size: 135.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for antspynet-0.2.2.tar.gz
Algorithm Hash digest
SHA256 e1e214a18700c979e018a6d71fb6a46353418402f1813f8289672c218e7e888b
MD5 8bf04f0cbf84b0df2410247b3fdd58b8
BLAKE2b-256 878a4fb138ff14e5c0880025c41dc0f3ff81169cdf5ff0407cdd70849fa761d3

See more details on using hashes here.

Provenance

File details

Details for the file antspynet-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: antspynet-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 180.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for antspynet-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b780cee7b4895cad3dc952bb3c1e71b5bc9a4b85338e0115a255721a9633cd65
MD5 137750137742bb04318a03d00c1d63ee
BLAKE2b-256 fa863bff94d2131583edc1fcef6dfba3ebc837e78c4cf0379ef3994af1906b5b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page