Skip to main content

Applied Econometrics Library for Python

Project description

=================================================== appelpy: Applied Econometrics Library for Python


About 👁️


appelpy is the Applied Econometrics Library for Python. It seeks to bridge the gap between the software options that have a simple syntax (such as Stata) and other powerful options that use Python's object-oriented programming as part of data modelling workflows. ⚗️

Econometric modelling and general regression analysis in Python have never been easier!

The library builds upon the functionality of the 'vanilla' Python data stack (e.g. Pandas, Numpy, etc.) and other libraries such as Statsmodels.

See the appelpy-examples <https://github.com/mfarragher/appelpy-examples>_ Github repo for more detailed documentation and notebooks that show the functionality of the library.

🥧 Why it's as easy as pie

Here is a flavour of a basic OLS regression done through appelpy, supposing you have data <https://econpapers.repec.org/paper/bocbocins/caschool.htm>_ sitting in a Pandas dataframe df and want to model the dependent variable api00 on three other variables:::

    from appelpy.linear_model import OLS
    model1 = OLS(df, ['api00'], ['acs_k3', 'meals', 'full'])
    model1.results_output  # returns summary results

The key information is sitting in the model1 object, but there is much more functionality that can be done with it. These are more things that can be done via one line of code:

  • Diagnostics can be called from the object: e.g. produce a P-P plot via model1.diagnostic_plot('pp_plot')
  • Model selection statistics: e.g. find the root mean square error of the model from model1.model_selection_stats
  • Standardized model estimates: model1.results_output_standardized

🍏 What inspired it?

  1. The simple syntax of software such as Stata. With the data loaded, a regression model summary can be returned by a one-line command:

    .. code-block:: stata

    regress api00 acs_k3 meals full
    

However with the simplicity comes a few disadvantages: it is not open-source software; the workflows are tricky with modern business problems; lacks the benefits of object-oriented programming.

  1. Statsmodels is a powerful Python library that addresses some of those disadvantages, but with that power comes a considerable learning curve and clunkiness. Here is the code for the same regression:::

     import statsmodels.api as sm
     model1 = sm.OLS(df['api00'], sm.add_constant(df['acs_k3', 'meals', 'full'])).fit()
     results1 = model1.summary()  # returns summary results
    

It can get much more unwieldy than that. The model results object is brilliant as it can be printed in different formats (plaintext, Latex, etc.)... but that is only the starting point. How do I diagnose the regression model itself? How do I get standardized estimates? That's where it becomes more complicated.

appelpy simply wants to achieve a sweet spot between both approaches.


Installation ⏲️


pip install appelpy


Dependencies 🖇️


  • pandas>=0.24
  • scipy
  • numpy
  • statsmodels>=0.8
  • patsy
  • seaborn
  • matplotlib

Licence ⚖️


Modified BSD (3-clause)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
appelpy-0.0.2-py3-none-any.whl (17.6 kB) Copy SHA256 hash SHA256 Wheel py3
appelpy-0.0.2.tar.gz (17.7 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page