Python package for exploratory text data analysis
Project description
Arabica
Python package for exploratory text data analysis
Text data is often recorded as a time series with significant variability over time. Some examples of time-series text data include Twitter tweets, research article metadata, product reviews, and newspaper headlines. Arabica makes exploratory analysis of these time-series text datasets simple by providing:
- Descriptive n-gram analysis: n-gram frequencies
- Time-series n-gram analysis: n-gram frequencies over a period
- Text visualization: n-gram heatmap, line plot, word cloud
- Sentiment analysis: VADER sentiment classifier
- Structural breaks identification: Jenks Optimization Method
It automatically cleans data from punctuation on input. It can also apply all or a selected combination of the following cleaning operations:
- Remove digits from the text
- Remove the standard list(s) of stopwords
- Remove an additional list of specific strings
Arabica works with texts of languages based on the Latin alphabet, uses cleantext
for punctuation cleaning, and enables stop words removal for languages in the NLTK
corpus of stopwords.
It reads dates in:
- US-style: MM/DD/YYYY (2013-12-31, Feb-09-2009, 2013-12-31 11:46:17, etc.)
- European-style: DD/MM/YYYY (2013-31-12, 09-Feb-2009, 2013-31-12 11:46:17, etc.) date and datetime formats.
Installation
Arabica requires Python 3.8 - 3.10, NLTK - stop words removal, cleantext - text cleaning, wordcloud - word cloud visualization, plotnine - heatmaps and line graphs, matplotlib - word clouds and graphical operations, vaderSentiment - sentiment analysis, and jenskpy for breakpoint identification.
To install using pip, use:
pip install arabica
Usage
- Import the library:
from arabica import arabica_freq
from arabica import cappuccino
from arabica import coffee_break
- Choose a method:
arabica_freq enables a specific set of cleaning operations (lower casing, numbers, stop words, and additional strings removal) and returns a dataframe with aggregated unigrams, bigrams, and trigrams frequencies over a period.
def arabica_freq(text: str, # Text
time: str, # Time
date_format: str, # Date format: 'eur' - European, 'us' - American
time_freq: str = '', # Aggregation period: 'Y'/'M'/'D', if no aggregation: 'ungroup'
max_words: int = '', # Maximum of most frequent n-grams displayed for each period
stopwords: [], # Languages for stop words
skip: [], # Remove additional strings
numbers: bool = False, # Remove all digits
lower_case: bool = False # Lowercase text
)
cappuccino enables cleaning operations (lower casing, numbers, stop words, and additional strings removal) and provides plots for descriptive (word cloud) and time-series (heatmap, line plot) visualization.
def cappuccino(text: str, # Text
time: str, # Time
date_format: str, # Date format: 'eur' - European, 'us' - American
plot: str = '', # Chart type: 'wordcloud'/'heatmap'/'line'
ngram: int = '', # N-gram size, 1 = unigram, 2 = bigram, 3 = trigram
time_freq: str = '', # Aggregation period: 'Y'/'M', if no aggregation: 'ungroup'
max_words int = '', # Maximum of most frequent n-grams displayed for each period
stopwords: [], # Languages for stop words
skip: [] , # Remove additional strings
numbers: bool = False, # Remove numbers
lower_case: bool = False # Lowercase text
coffee_break provides sentiment analysis and breakpoint identification in aggregated time series of sentiment.
The implemented models are:
-
VADER is a lexicon and rule-based sentiment classifier attuned explicitly to sentiments expressed in social media. See: Hutto, & Gilbert, 2014. VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Available from here.
-
FinVADER improves VADER's classification accuracy, including two financial lexicons. Available from here.
Structural breaks in the time series are identified with the Fisher-Jenks algorithm (Jenks, 1977. Optimal data classification for choropleth maps).
def coffee_break(text: str, # Text
time: str, # Time
date_format: str, # Date format: 'eur' - European, 'us' - American
model: str, # Sentiment classifier, 'vader' - general language, 'finvader' - financial text
skip: [] , # Remove additional strings
preprocess: bool = False, # Clean data from numbers and punctuation
time_freq: str ='', # Aggregation period: 'Y'/'M'
n_breaks: int ='' # Number of breaks: min. 2
)
Documentation, examples and tutorials
- Read the documentation
For more examples of coding, read these tutorials:
General use:
- Sentiment Analysis and Structural Breaks in Time-Series Text Data here
- Visualization Module in Arabica Speeds Up Text Data Exploration here
- Text as Time Series: Arabica 1.0 Brings New Features for Exploratory Text Data Analysis here
Applications:
- Business Intelligence: Customer Satisfaction Measurement with N-gram and Sentiment Analysis here
- Meta-data description: TBA
Please visit here for any questions, issues, bugs, and suggestions.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.