Skip to main content

High performance simulation of networks of multicompartment neurons.

Project description

The Arbor Python package is a wrapper around the high-performance C++ library Arbor, for constructing and running simulations multi-compartment neuron models, from single cell models to large networks.

Documentation is available online at Read the Docs.

Submit a ticket if you have any questions or want help.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arbor-0.8.1.tar.gz (19.2 MB view details)

Uploaded Source

Built Distributions

arbor-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

arbor-0.8.1-cp311-cp311-macosx_10_15_universal2.whl (8.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ universal2 (ARM64, x86-64)

arbor-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

arbor-0.8.1-cp310-cp310-macosx_10_15_universal2.whl (8.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ universal2 (ARM64, x86-64)

arbor-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

arbor-0.8.1-cp39-cp39-macosx_10_15_universal2.whl (8.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ universal2 (ARM64, x86-64)

arbor-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

arbor-0.8.1-cp38-cp38-macosx_10_15_universal2.whl (8.8 MB view details)

Uploaded CPython 3.8 macOS 10.15+ universal2 (ARM64, x86-64)

arbor-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file arbor-0.8.1.tar.gz.

File metadata

  • Download URL: arbor-0.8.1.tar.gz
  • Upload date:
  • Size: 19.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for arbor-0.8.1.tar.gz
Algorithm Hash digest
SHA256 7e06e0d0161d466071110f92b8db74a4ef3e83e372da2863b62f257053159044
MD5 26167a4e4d6ba95f91578271542257e2
BLAKE2b-256 581b44fd1652f6f926b517fa0374cc9279c3728c912eea74b7a41d274607ae57

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53874b78fd68177ba51b064d1c251cbdef11d2887905b5779e17d6e3a3f25b8e
MD5 2cb93b796ece0be7d70ac8e710df5d6b
BLAKE2b-256 329fdca5c9048dffe74687993000de4e9a6acc9d9dd24dacaa30d35ad85daaf1

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp311-cp311-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp311-cp311-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 e03d3b542be63739ae88b8a8874a4d771c041bd95a63154c80e83c844bdef981
MD5 2877de0007f7a66c97909cf9e172c23b
BLAKE2b-256 779eb3613446037d5e8e137faf968b2f1e8b4684d587ebf1fc56a900184be5f8

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b934d7a4bbad9f513e40ef25ab73cec4c5fe177a5327ab96a12e43e0b49257bc
MD5 8a75a5749274bc83f9ed7570ac9d484e
BLAKE2b-256 0345f8101c3410dc0e20115dab2bf312d7bfae3a8eabdff73a4f551522f0e736

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp310-cp310-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp310-cp310-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 f6da778ab35811dac7704fbff4f74348ca3e4dd4ae611131aa6215808589319d
MD5 a2c0e706c76720c8e9bbc94c8b2b4008
BLAKE2b-256 fb8a43403b3f019b74f80a36d687f355bf68e5ceaf3732d5c472e089f762d277

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55393ea79bdffcfef8789107cbd1ff1fe4b86c12360a403a5b89b915d579d0ee
MD5 d186bbeb1067936d1fd21aacfebeac7c
BLAKE2b-256 b079c0ee3eea12c45e7040d2c9907b6f8aa6a99a572618c1bc142576381591b4

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp39-cp39-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp39-cp39-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 e757542c0be07ffb38fb07a0e53c3dbcfab492b3e922b6562d65bde086358d63
MD5 ddb3b05b0f92ac79fcb291d1058f7474
BLAKE2b-256 1a4c3004cc8b452880198fac41b935dc100141655fa291804fed8936fed9eb78

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2be00c7e8f662979f1f948791b188dc50f1c2c45eeac9ce6ff7cf74a33f5bf0
MD5 d22f4533a9d7219fc201047c76dcc539
BLAKE2b-256 986b880b159a40a7982a5c9daa3c6c2c4f76de93ddfad91c53b75e9566c217bc

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp38-cp38-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp38-cp38-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 50947c37c6eee354f4fcf83b566359c09e3bd8ff1b0a00df1b1297e899421693
MD5 3a219b631d4f55702c0b704a661f14f4
BLAKE2b-256 984ad0d98e2119d1c2f02b9f87a9dd1d30b958c9944e4e2ea9f9c061a9759eab

See more details on using hashes here.

File details

Details for the file arbor-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0bf1ad2679207e1ceb699dff6ed29a906c3a3d0d0260a1ad16ca1ade422ecf9
MD5 d2084120c1d590fd0f850f099e419470
BLAKE2b-256 8b1797e2bc6ea5c95fe311907e7e5ec2501df8c9d3c3b11419aef6a3d739d183

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page