Skip to main content

LLM Observability

Project description

Arize Phoenix logo
arize-phoenix-client

PyPI Version Documentation

Phoenix Client provides a interface for interacting with the Phoenix platform via its REST API, enabling you to manage datasets, run experiments, analyze traces, and collect feedback programmatically.

Features

  • REST API Interface - Interact with Phoenix's OpenAPI REST interface
  • Prompts - Create, version, and invoke prompt templates
  • Datasets - Create and append to datasets from DataFrames, CSV files, or dictionaries
  • Experiments - Run evaluations and track experiment results
  • Spans - Query and analyze traces with powerful filtering
  • Annotations - Add human feedback and automated evaluations
  • Evaluation Helpers - Extract span data in formats optimized for RAG evaluation workflows

Installation

Install the Phoenix Client using pip:

pip install arize-phoenix-client

Getting Started

Environment Variables

Configure the Phoenix Client using environment variables for seamless use across different environments:

# For local Phoenix server (default)
export PHOENIX_BASE_URL="http://localhost:6006"

# Cloud Instance
export PHOENIX_API_KEY="your-api-key"
export PHOENIX_BASE_URL="https://app.phoenix.arize.com/s/your-space"

# For custom Phoenix instances with API key authentication
export PHOENIX_BASE_URL="https://your-phoenix-instance.com"
export PHOENIX_API_KEY="your-api-key"

# Customize headers
export PHOENIX_CLIENT_HEADERS="Authorization=Bearer your-api-key,custom-header=value"

Client Initialization

The client automatically reads environment variables, or you can override them:

from phoenix.client import Client, AsyncClient

# Automatic configuration from environment variables
client = Client()

client = Client(base_url="http://localhost:6006")  # Local Phoenix server

# Cloud instance with API key
client = Client(
    base_url="https://app.phoenix.arize.com/s/your-space",
    api_key="your-api-key"
)

# Custom authentication headers
client = Client(
    base_url="https://your-phoenix-instance.com",
    headers={"Authorization": "Bearer your-api-key"}
)

# Asynchronous client (same configuration options)
async_client = AsyncClient()
async_client = AsyncClient(base_url="http://localhost:6006")
async_client = AsyncClient(
    base_url="https://app.phoenix.arize.com/s/your-space",
    api_key="your-api-key"
)

Resources

The Phoenix Client organizes functionality into resources that correspond to key Phoenix platform features. Each resource provides specialized methods for managing different types of data:

Prompts

Manage prompt templates and versions:

from phoenix.client import Client
from phoenix.client.types import PromptVersion

content = """
You're an expert educator in {{ topic }}. Summarize the following article
in a few concise bullet points that are easy for beginners to understand.

{{ article }}
"""

prompt = client.prompts.create(
    name="article-bullet-summarizer",
    version=PromptVersion(
        messages=[{"role": "user", "content": content}],
        model_name="gpt-4o-mini",
    ),
    prompt_description="Summarize an article in a few bullet points"
)

# Retrieve and use prompts
prompt = client.prompts.get(prompt_identifier="article-bullet-summarizer")

# Format the prompt with variables
prompt_vars = {
    "topic": "Sports",
    "article": "Moises Henriques, the Australian all-rounder, has signed to play for Surrey in this summer's NatWest T20 Blast. He will join after the IPL and is expected to strengthen the squad throughout the campaign."
}
formatted_prompt = prompt.format(variables=prompt_vars)

# Make a request with your Prompt using OpenAI
from openai import OpenAI
oai_client = OpenAI()
resp = oai_client.chat.completions.create(**formatted_prompt)
print(resp.choices[0].message.content)

Datasets

Manage evaluation datasets and examples for experiments and evaluation:

import pandas as pd

# List all available datasets
datasets = client.datasets.list()
for dataset in datasets:
    print(f"Dataset: {dataset['name']} ({dataset['example_count']} examples)")

# Get a specific dataset with all examples
dataset = client.datasets.get_dataset(dataset="qa-evaluation")
print(f"Dataset {dataset.name} has {len(dataset)} examples")

# Convert dataset to pandas DataFrame for analysis
df = dataset.to_dataframe()
print(df.columns)  # Index(['input', 'output', 'metadata'], dtype='object')

# Create a new dataset from dictionaries
dataset = client.datasets.create_dataset(
    name="customer-support-qa",
    dataset_description="Q&A dataset for customer support evaluation",
    inputs=[
        {"question": "How do I reset my password?"},
        {"question": "What's your return policy?"},
        {"question": "How do I track my order?"}
    ],
    outputs=[
        {"answer": "You can reset your password by clicking the 'Forgot Password' link on the login page."},
        {"answer": "We offer 30-day returns for unused items in original packaging."},
        {"answer": "You can track your order using the tracking number sent to your email."}
    ],
    metadata=[
        {"category": "account", "difficulty": "easy"},
        {"category": "policy", "difficulty": "medium"},
        {"category": "orders", "difficulty": "easy"}
    ]
)

# Create dataset from pandas DataFrame
df = pd.DataFrame({
    "prompt": ["Hello", "Hi there", "Good morning"],
    "response": ["Hi! How can I help?", "Hello! What can I do for you?", "Good morning! How may I assist?"],
    "sentiment": ["neutral", "positive", "positive"],
    "length": [20, 25, 30]
})

dataset = client.datasets.create_dataset(
    name="greeting-responses",
    dataframe=df,
    input_keys=["prompt"],           # Columns to use as input
    output_keys=["response"],        # Columns to use as expected output
    metadata_keys=["sentiment", "length"]  # Additional metadata columns
)

Spans

Query for spans and annotations from your projects for custom evaluation and annotation workflows:

from datetime import datetime, timedelta

# Get spans as pandas DataFrame for analysis
spans_df = client.spans.get_spans_dataframe(
    project_identifier="my-llm-app",
    limit=1000,
    root_spans_only=True,  # Only get top-level spans
    start_time=datetime.now() - timedelta(hours=24)
)

# Get span annotations as DataFrame
annotations_df = client.spans.get_span_annotations_dataframe(
    spans_dataframe=spans_df,  # Use spans from previous query
    project_identifier="my-llm-app",
    include_annotation_names=["relevance", "accuracy"],  # Only specific annotations
    exclude_annotation_names=["note"]  # Exclude UI notes
)

Annotations

Add annotations to spans for evaluation, user feedback, and custom annotation workflows:

# Add a single annotation with human feedback
client.annotations.add_span_annotation(
    span_id="span-123",
    annotation_name="helpfulness",
    annotator_kind="HUMAN",
    label="helpful",
    score=0.9,
    explanation="Response directly answered the user's question"
)

# Bulk annotation logging for multiple spans
annotations = [
    {
        "name": "sentiment",
        "span_id": "span-123",
        "annotator_kind": "LLM",
        "result": {"label": "positive", "score": 0.8}
    },
    {
        "name": "accuracy",
        "span_id": "span-456",
        "annotator_kind": "HUMAN",
        "result": {"label": "accurate", "score": 0.95}
    },
]
client.annotations.log_span_annotations(span_annotations=annotations)

Projects

Manage Phoenix projects that organize your AI application data:

# List all projects
projects = client.projects.list()
for project in projects:
    print(f"Project: {project['name']} (ID: {project['id']})")

# Create a new project
new_project = client.projects.create(
    name="Customer Support Bot",
    description="Traces and evaluations for our customer support chatbot"
)
print(f"Created project with ID: {new_project['id']}")

Documentation

Community

Join our community to connect with thousands of AI builders:

  • 🌍 Join our Slack community.
  • 💡 Ask questions and provide feedback in the #phoenix-support channel.
  • 🌟 Leave a star on our GitHub.
  • 🐞 Report bugs with GitHub Issues.
  • 𝕏 Follow us on 𝕏.
  • 🗺️ Check out our roadmap to see where we're heading next.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arize_phoenix_client-1.29.0.tar.gz (143.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

arize_phoenix_client-1.29.0-py3-none-any.whl (149.7 kB view details)

Uploaded Python 3

File details

Details for the file arize_phoenix_client-1.29.0.tar.gz.

File metadata

  • Download URL: arize_phoenix_client-1.29.0.tar.gz
  • Upload date:
  • Size: 143.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for arize_phoenix_client-1.29.0.tar.gz
Algorithm Hash digest
SHA256 f7734b1c1c485f3c130773cde3766507887d648695e9b20b921227ba2423be5e
MD5 78b43c9779aae9e842bec2164f267f9c
BLAKE2b-256 18b0162fd719f6aba63a6cdf0a81d160467ee462db3677ff9c6a386c147270d9

See more details on using hashes here.

File details

Details for the file arize_phoenix_client-1.29.0-py3-none-any.whl.

File metadata

File hashes

Hashes for arize_phoenix_client-1.29.0-py3-none-any.whl
Algorithm Hash digest
SHA256 72ebaafc7920629f8d39beab839c90f2ab8f331f719110aaccbe0b1337c6c5f5
MD5 7c283cfda5b33aa4b1aeae387e5ce5b4
BLAKE2b-256 91a39ecacbae1b8cdc413c2ca411f81fcebfe38259a622443295e00e3c2bd297

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page