Skip to main content

Arrakis Python client library

Project description

arrakis-python

Arrakis Python client library

ci documentation pypi version conda version


Resources

Installation

With pip:

pip install arrakis

With conda:

conda install -c conda-forge arrakis-python

Features

  • Query live and historical timeseries data
  • Describe channel metadata
  • Search for channels matching a set of conditions
  • Publish timeseries data

Quickstart

Fetch timeseries

import arrakis

start = 1187000000
end = 1187001000
channels = [
    "H1:CAL-DELTAL_EXTERNAL_DQ",
    "H1:LSC-POP_A_LF_OUT_DQ",
]

block = arrakis.fetch(channels, start, end)
for channel, series in block.items():
    print(channel, series)

where block is a [arrakis.block.SeriesBlock][] and series is a [arrakis.block.Series][].

Stream timeseries

1. Live data
import arrakis

channels = [
    "H1:CAL-DELTAL_EXTERNAL_DQ",
    "H1:LSC-POP_A_LF_OUT_DQ",
]

for block in arrakis.stream(channels):
	print(block)
2. Historical data
import arrakis

start = 1187000000
end = 1187001000
channels = [
    "H1:CAL-DELTAL_EXTERNAL_DQ",
    "H1:LSC-POP_A_LF_OUT_DQ",
]

for block in arrakis.stream(channels, start, end):
    print(block)

Describe metadata

import arrakis

channels = [
    "H1:CAL-DELTAL_EXTERNAL_DQ",
    "H1:LSC-POP_A_LF_OUT_DQ",
]

metadata = arrakis.describe(channels)

where metadata is a dictionary mapping channel names to [arrakis.channel.Channel][].

Find channels

import arrakis

for channel in arrakis.find("H1:LSC-*"):
    print(channel)

where channel is a [arrakis.channel.Channel][].

Count channels

import arrakis

count = arrakis.count("H1:LSC-*")

Publish timeseries

from arrakis import Channel, Publisher, SeriesBlock, Time
import numpy

# admin-assigned ID
publisher_id = "my_producer"

# define channel metadata
metadata = {
    "H1:FKE-TEST_CHANNEL1": Channel(
        "H1:FKE-TEST_CHANNEL1",
        data_type=numpy.float64,
        sample_rate=64,
    ),
    "H1:FKE-TEST_CHANNEL2": Channel(
        "H1:FKE-TEST_CHANNEL2",
        data_type=numpy.int32,
        sample_rate=32,
    ),
}

publisher = Publisher(publisher_id)
publisher.register()

with publisher:
    # create block to publish
    series = {
        "H1:FKE-TEST_CHANNEL1": numpy.array([0.1, 0.2, 0.3, 0.4], dtype=numpy.float64),
        "H1:FKE-TEST_CHANNEL2": numpy.array([1, 2], dtype=numpy.int32),
    }
    block = SeriesBlock(
        1234567890 * Time.SECONDS,  # time in nanoseconds for first sample
        series,                     # the data to publish
        metadata,                   # the channel metadata
    )

    # publish timeseries
    publisher.publish(block)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arrakis-0.3.0.tar.gz (27.6 kB view details)

Uploaded Source

Built Distribution

arrakis-0.3.0-py3-none-any.whl (32.8 kB view details)

Uploaded Python 3

File details

Details for the file arrakis-0.3.0.tar.gz.

File metadata

  • Download URL: arrakis-0.3.0.tar.gz
  • Upload date:
  • Size: 27.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.2

File hashes

Hashes for arrakis-0.3.0.tar.gz
Algorithm Hash digest
SHA256 51b964e85ccfd74c8b2bfa7b115a865671d107b9d72e94183e5bcae6288d7342
MD5 13d6109f5af920f2905a5e9d0125a312
BLAKE2b-256 58ca4521c36a53f426d2719e05db03b6cd397817b0fd6bc42f29780d595b0a10

See more details on using hashes here.

File details

Details for the file arrakis-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: arrakis-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 32.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.2

File hashes

Hashes for arrakis-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f5f207b7eb72dca3f1e4414cfdd776066c8b9a6bff6fb148dc25fd1e188167d5
MD5 32c57c03a2f5ee6b4aaf3024e3b317ab
BLAKE2b-256 a497bf33d229e572f6e32d8cc8091612a622d9ac42a06c85a3708667b8ad6814

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page