A forward model using SVR to estimate stellar parameters from spectra.
Project description
SLAM
Stellar LAbel Machine (SLAM) is a forward model to estimate stellar parameters (e.g., Teff, logg, [Fe/H] and chemical abundances). It is based on Support Vector Regression (SVR), which in essential is a non-parametric regression method.
Author
Bo Zhang (bozhang@nao.cas.cn)
Home page
Install
- for the latest stable version:
pip install astroslam
- for the latest github version:
pip install git+git://github.com/hypergravity/astroslam
Requirements
- numpy
- scipy
- matplotlib
- astropy
- sklearn
- joblib
- pandas
- emcee
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
astroslam-1.2019.109.3.tar.gz
(100.5 kB
view hashes)
Built Distributions
astroslam-1.2019.109.3-py3.7.egg
(255.4 kB
view hashes)
Close
Hashes for astroslam-1.2019.109.3-py3.7.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0949a567b84de9065d89b7253a6b3d566998a13ec1a1f38ddbd1adcbdf9303ee |
|
MD5 | 180ae2645a436e0fdae38caba58efcb5 |
|
BLAKE2b-256 | 9204364366695fe2e84dd44e80d3c3cbce3af550f4121ee3eb8c4713a676a54e |
Close
Hashes for astroslam-1.2019.109.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 580260d3c163ffa714f6d6297576f885219a737eb070c90bb691f16e788d2771 |
|
MD5 | 9e5d43835b3b132fbeb699f1cc379b31 |
|
BLAKE2b-256 | d7077e83ece526d41f7e60a94c429a7c2e4524b23f401dbaabd1b6740d8368bf |