An image augmentation library for object detection and image classification tasks.
Project description
augment-auto
A python image augmentation library based on opencv and numpy. It can be used for augmenting images in both image classification and object detection tasks. Many different techniques of augmentation are supported, which can be clustered into three major types - geometric transformations, photometric transformations and kernel-based transformations. Library has support for images with bounding boxes as well.
Installation
Install using pip:
pip install augment-auto
Install from github:
git clone https://github.com/keshavoct98/image-augmentation.git
python setup.py install
Documentation
Complete documentaion - https://augment-auto.readthedocs.io/en/latest/
Demo ipython notebokk - demo.ipynb
Examples
# Geometric Transformations
img = cv2.imread('images/3.jpg')
img_new = crop(img, point1 = (100, 100), point2 = (450, 400))
img_new = rotate(img, angle = 15, keep_resolution = True)
img_new = scale(img, fx = 1.5, fy = 1.5, keep_resolution = False)
img_new = shear(img, shear_val = 0.2, axis = 1)
img_new = translate(img, tx = 50, ty = 60)
# Geometric Transformations with bounding box
img = cv2.imread('images/0.jpeg')
bbox = [581, 274, 699, 321]
img_new, bbox_new = crop(img, point1 = (100, 100), point2 = (650, 400), box = bbox)
img_new, bbox_new = rotate(img, angle = 15, keep_resolution = True, box = bbox)
img_new, bbox_new = scale(img, fx = 1.5, fy = 1.3, keep_resolution = False, box = bbox)
img_new, bbox_new = shear(img, shear_val = 0.2, axis = 0, box = bbox)
img_new, bbox_new = translate(img, tx = 50, ty = 160, box = bbox)
# Photometric Transformations
img = cv2.imread('images/1.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_new = brightness_contrast(img, alpha = 1.3, beta = 20)
img_new = brightness_contrast(img, alpha = 0.7, beta = -10)
img_new = colorSpace(img, colorspace = 'hsv')
img_new = colorSpace(img, colorspace = 'ycrcb')
img_new = colorSpace(img, colorspace = 'lab')
img_new = addNoise(img, 'gaussian', mean = 0, var = 0.08)
img_new = addNoise(img, 'salt_pepper', sp_ratio = 0.5, noise_amount = 0.1)
img_new = addNoise(img, 'poisson', noise_amount = 0.5)
# Kernel-based Transformations
img = cv2.imread('images/0.jpeg')
bbox = [581, 274, 699, 321]
img_new = randomErase(img, size = (100, 100))
img_new = randomCropAdd(img, size = (100, 100))
img_new = sharpen(img)
img_new = randomErase(img, size = (60, 40), box = bbox)
img_new = randomCropAdd(img, size = (60, 40), box = bbox)
img_new = blur(img, 'avg', ksize = (9,9))
img_new = blur(img, 'gaussian', ksize = (9,9), gaussian_sigma = 0)
img_new = blur(img, 'median', median_ksize = 11)
References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file augment_auto-0.1.0.tar.gz.
File metadata
- Download URL: augment_auto-0.1.0.tar.gz
- Upload date:
- Size: 6.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
00fd86165026b3fe682238b32ee6707f474af28d17fd975ce47be5e5c9512372
|
|
| MD5 |
c4cbae5c1cdb95fe9141dfc73bd1c1c7
|
|
| BLAKE2b-256 |
dbfc00818212f1c75dea36037e98a15b8b00c4fac44f0d6e90d7d89169f6a941
|
File details
Details for the file augment_auto-0.1.0-py3-none-any.whl.
File metadata
- Download URL: augment_auto-0.1.0-py3-none-any.whl
- Upload date:
- Size: 8.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
62c958f3b63ba5a4ca73a56034287de379d5600b04b8020d17c5f9ee0ccced79
|
|
| MD5 |
42f0bf33fcabc56d97ce4aeecc48ef31
|
|
| BLAKE2b-256 |
56452a2e563ea436034a698518096aa813ed23f15709c8cbef4ae3b3971f3a40
|