Skip to main content

Python package to download Australian rainfall data from the Bureau of Meteorology via the Queensland Government's SILO Patched Point Data service

Project description

ausweather

Download Australian weather data from the Bureau of Meteorology via SILO using Python

Installation

Install from the command line:

python -m pip install -U ausweather

Example of how to use

In a Python interpreter session:

>>> import ausweather

To use this package to download annual rainfall data for Kent Town, first you need to find the station number using the BoM Weather Station Directory. Then you can use the fetch_bom_station_from_silo(station_number, email_address) function to return a dictionary:

>>> data = ausweather.fetch_bom_station_from_silo(23090, 'kinverarity@hotmail.com')
station #: 23090 name: ADELAIDE (KENT TOWN) title: 23090 ADELAIDE (KENT TOWN) (fetched from SILO on 2020-03-04 16:23:26.395696)
>>> data.keys()
dict_keys(['silo_returned', 'station_no', 'station_name', 'title', 'df', 'annual', 'srn'])

The data is stored in this dictionary under the key "df":

>>> data['df'].info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25677 entries, 1 to 25677
Data columns (total 28 columns):
Date       25677 non-null datetime64[ns]
Day        25677 non-null int32
Date2      25677 non-null object
T.Max      25677 non-null float64
Smx        25677 non-null int32
T.Min      25677 non-null float64
Smn        25677 non-null int32
Rain       25677 non-null float64
Srn        25677 non-null int32
Evap       25677 non-null float64
Sev        25677 non-null object
Radn       25677 non-null float64
Ssl        25677 non-null int32
VP         25677 non-null float64
Svp        25677 non-null int32
RHmaxT     25677 non-null float64
RHminT     25677 non-null float64
FAO56      25677 non-null float64
Mlake      25677 non-null float64
Mpot       25677 non-null float64
Mact       25677 non-null float64
Mwet       25677 non-null float64
Span       25677 non-null float64
Ssp        25677 non-null int32
EvSp       25677 non-null float64
Ses        25677 non-null int32
MSLPres    25677 non-null float64
Sp         25677 non-null int32
dtypes: datetime64[ns](1), float64(16), int32(9), object(2)
memory usage: 4.6+ MB

To see annual rainfall, you can group-by the dt.year accessor of the "Date" column:

>>> df = data["df"]
>>> df.groupby(df.Date.dt.year).Rain.sum()
Date
1950    426.9
1951    677.9
1952    584.9
1953    601.0
1954    439.6
        ...  
2016    820.8
2017    536.2
2018    429.8
2019    376.3
2020    101.6
Name: Rain, Length: 71, dtype: float64

License

Released under the MIT License.

Version history

Version 0.2.1 (3 Mar 2020)

  • Fix bug for whitespace in BoM station name

Version 0.2.0 (3 Mar 2020)

  • Update, many changes.

Version 0.1.0 (11 Feb 2020)

  • Initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ausweather-0.7.tar.gz (1.8 MB view details)

Uploaded Source

Built Distribution

ausweather-0.7-py3-none-any.whl (268.2 kB view details)

Uploaded Python 3

File details

Details for the file ausweather-0.7.tar.gz.

File metadata

  • Download URL: ausweather-0.7.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for ausweather-0.7.tar.gz
Algorithm Hash digest
SHA256 90a5206b6744fe38e7b460e85bcd01ae8c431ebc3ae67a6a4bebfed786147284
MD5 3f7e6b71ca377f9bc601503115f5fa78
BLAKE2b-256 69f9425fe59d5a12e05377786cffb8d80ecbf4738d612165f3fea4e15ad6fdc4

See more details on using hashes here.

File details

Details for the file ausweather-0.7-py3-none-any.whl.

File metadata

  • Download URL: ausweather-0.7-py3-none-any.whl
  • Upload date:
  • Size: 268.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for ausweather-0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 b7503b222d16bcf8254dbbfad30ae7c0243c643859d3cd414cc73947574c96de
MD5 f54f2d5c43d935fbc54aa692ac78d59c
BLAKE2b-256 26a03c99df03b226ea4431500dc1335a391f683441418eb7e8a5f068708850c2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page