An automatic differentiation library for Python+NumPy.
Project description
auto_diff
An automatic differentiation library for Python+NumPy
How To Use
There are five public elements of the API:
-
AutoDiffis a context manager and must be entered with a with statement. The__enter__method returns a new version of x that must be used to instead of the x passed as a parameter to theAutoDiffconstructor. -
value,jacobian,get_value_and_jacobian, these functions, which must be called in anAutoDiffcontext, extract the value, Jacobian, or both from a dependent variable. -
get_value_and_jacobians, if multiple vectors are passed in as arguments toAutoDiff, this method returns a tuple of Jacobians wrt to the different variables.
If you are using get_value_and_jacobian, x must be a 2D column vector, and
the value you must be parsing for the derivative must also be a 2D column
vector. In most other cases, how to convert to a Jacobian Matrix is
non-obvious. If you wish to deal with those cases see the paragraph after the
example.
auto_diff also supports using sparse matrices instead of ndarrays to store the Jacobians.
Simple use the SparseAutoDiff context manager instead of AutoDiff.
Also if you use SparseAutoDiff, you need to verify that your code and none of non-NumPy dependencies use the np.ndarray constructor for a floating point vector.
If using SparseAutoDiff, get_value_and_jacobian, jacobian, and get_value_and_jacobians return scipy.sparse.lil_matrixes instead of ndarrays.
Example
import auto_diff
import numpy as np
# Define a function f
# f can have other arguments, if they are constant wrt x
# Define the input vector, x
with auto_diff.AutoDiff(x) as x:
f_eval = f(x, u)
y, Jf = auto_diff.get_value_and_jacobian(f_eval)
# y is the value of f(x, u) and Jf is the Jacobian of f with respect to x.
If you need both the Jacobian wrt to x and u,
with auto_diff.AutoDiff(x, u) as (x, u):
f_eval = f(x, u)
y, (Jfx, Jfu) = auto_diff.get_value_and_jacobians(f_eval)
# y is the value of f(x, u), Jfx is the Jacobian of f with respect to x, and
# Jfu is the Jacobian of f with respect to u.
Finally, if f and x are very high-dimensional, then we can use SparseAutoDiff to save memory.
with auto_diff.SparseAutoDiff(x, u) as (x, u):
f_eval = f(x, u)
y, (Jfx, Jfu) = auto_diff.get_value_and_jacobians(f_eval)
# y is the value of f(x, u), Jfx is the Jacobian of f with respect to x, and
# Jfu is the Jacobian of f with respect to u.
# Jfx and Jfu are instances of scipy.sparse.lil_matrix.
We can also differentiate functions from arbitrarily shaped numpy arrays to
arbitrarily shaped outputs. Let y = f(x), where x is a numpy array of shape
x.shape, and y is is the output of the function we wish to differentiate, f.
We can then access a numpy array of shape (*y.shape, *x.shape), by accessing
y.der. This represents the gradients of each component of y with respect to
x. To find the gradient of the norm of a vector x, for example one can do
import auto_diff
import numpy as np
x = np.array([[np.pi], [3.0], [17.0]])
with auto_diff.AutoDiff(x) as x:
print(np.linalg.norm(x).der)
Restrictions
- You must import numpy and use that object, rather then do something like
from numpy import ..., where...is either*or just function names.
Crashes, Bug Reports, and Feedback:
Email parthnobel@berkeley.edu
There are missing features right now. I'm working on them, feel free to email me if you want something prioritized.
How It Works
Parth Nobel. 2020. Auto_diff: an automatic differentiation package for Python. In Proceedings of the 2020 Spring Simulation Conference (SpringSim '20). Society for Computer Simulation International, San Diego, CA, USA, Article 10, 1–12. https://dl.acm.org/doi/10.5555/3408207.3408219
Prerequisite
A version of NumPy >= 1.17 may be required. Bugs on older versions have always raised errors, so there should be nothing to worry about.
Author: Parth Nobel (Github: /PTNobel, parthnobel@berkeley.edu) Version: 0.3
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file auto_diff-0.4.1.tar.gz.
File metadata
- Download URL: auto_diff-0.4.1.tar.gz
- Upload date:
- Size: 16.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
47bf57cea347b12b0c1027d8ca1a900a88cf310c99bf11fd8dcf92344ec356c7
|
|
| MD5 |
2553696e79f50cf584b917e56180f8a7
|
|
| BLAKE2b-256 |
f887f5544c677732e8cca9321b902031532c5db6d7c7ebabd4c62510f9cfaf7a
|
File details
Details for the file auto_diff-0.4.1-py3-none-any.whl.
File metadata
- Download URL: auto_diff-0.4.1-py3-none-any.whl
- Upload date:
- Size: 20.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
bf06d68a06eedeab625142d0ffb5a44bf07e91073ae656356756249f8cfce9d7
|
|
| MD5 |
c74f49f2357946d1cc6a7f8147254e8a
|
|
| BLAKE2b-256 |
4f9dfa6345351d24cc2d74f3e6cad664a59700fb1ee291cf441a203398b1cbcb
|