Skip to main content

Automated machine learning.

Project description

auto-sklearn

auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator.

Find the documentation here

Automated Machine Learning in four lines of code

import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)

Relevant publications

Efficient and Robust Automated Machine Learning
Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter
Advances in Neural Information Processing Systems 28 (2015)
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf

Auto-Sklearn 2.0: The Next Generation
Authors: Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter
arXiv:2007.04074 [cs.LG], 2020 https://arxiv.org/abs/2007.04074

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for auto-sklearn, version 0.12.6
Filename, size File type Python version Upload date Hashes
Filename, size auto-sklearn-0.12.6.tar.gz (6.1 MB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page