Skip to main content

Fast and Accurate ML in 3 Lines of Code

Project description

Fast and Accurate ML in 3 Lines of Code

Latest Release Conda Forge Python Versions Downloads GitHub license Discord Twitter Continuous Integration Platform Tests

Installation | Documentation | Release Notes

AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

💾 Installation

AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.

You can install AutoGluon with:

pip install autogluon

Visit our Installation Guide for detailed instructions, including GPU support, Conda installs, and optional dependencies.

:zap: Quickstart

Build accurate end-to-end ML models in just 3 lines of code!

from autogluon.tabular import TabularPredictor
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
predictions = predictor.predict("test.csv")
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
TimeSeriesPredictor Quick Start API
MultiModalPredictor Quick Start API

:mag: Resources

Hands-on Tutorials / Talks

Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available here.

Title Format Location Date
:tv: AutoGluon: Towards No-Code Automated Machine Learning Tutorial AutoML 2024 2024/09/09
:tv: AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code Tutorial AutoML 2023 2023/09/12
:sound: AutoGluon: The Story Podcast The AutoML Podcast 2023/09/05
:tv: AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data Tutorial PyData Berlin 2023/06/20
:tv: Solving Complex ML Problems in a few Lines of Code with AutoGluon Tutorial PyData Seattle 2023/06/20
:tv: The AutoML Revolution Tutorial Fall AutoML School 2022 2022/10/18

Scientific Publications

Articles

Train/Deploy AutoGluon in the Cloud

:pencil: Citing AutoGluon

If you use AutoGluon in a scientific publication, please refer to our citation guide.

:wave: How to get involved

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

:classical_building: License

This library is licensed under the Apache 2.0 License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon_tabular-1.5.0.tar.gz (437.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

autogluon_tabular-1.5.0-py3-none-any.whl (515.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon_tabular-1.5.0.tar.gz.

File metadata

  • Download URL: autogluon_tabular-1.5.0.tar.gz
  • Upload date:
  • Size: 437.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for autogluon_tabular-1.5.0.tar.gz
Algorithm Hash digest
SHA256 7d7a4bbaa1574fe823ba08059d58e6cbb264716fc429892bfec3f402edaeb550
MD5 5eb8d36aa6b066dc95b76e89c2bf3045
BLAKE2b-256 9c108576e66465a673f15c782e5d61ee4a994c6338d6ed511244653e0813df9e

See more details on using hashes here.

File details

Details for the file autogluon_tabular-1.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon_tabular-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 62ba6ee7fc88f60effc5e11ee6f55f86a0917b55f2c2ff881cd9a611267cdceb
MD5 12a98cdd2bdaf046ded42322c2f8fa41
BLAKE2b-256 487c50547d2940e98c8a15b8c92cd4953814385b95f5fc1dec806fa240389417

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page