Skip to main content

Fast and Accurate ML in 3 Lines of Code

Project description

Fast and Accurate ML in 3 Lines of Code

Latest Release Conda Forge Python Versions Downloads GitHub license Discord Twitter Continuous Integration Platform Tests

Installation | Documentation | Release Notes

AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

💾 Installation

AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.

You can install AutoGluon with:

pip install autogluon

Visit our Installation Guide for detailed instructions, including GPU support, Conda installs, and optional dependencies.

:zap: Quickstart

Build accurate end-to-end ML models in just 3 lines of code!

from autogluon.tabular import TabularPredictor
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
predictions = predictor.predict("test.csv")
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
TimeSeriesPredictor Quick Start API
MultiModalPredictor Quick Start API

:mag: Resources

Hands-on Tutorials / Talks

Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available here.

Title Format Location Date
:tv: AutoGluon: Towards No-Code Automated Machine Learning Tutorial AutoML 2024 2024/09/09
:tv: AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code Tutorial AutoML 2023 2023/09/12
:sound: AutoGluon: The Story Podcast The AutoML Podcast 2023/09/05
:tv: AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data Tutorial PyData Berlin 2023/06/20
:tv: Solving Complex ML Problems in a few Lines of Code with AutoGluon Tutorial PyData Seattle 2023/06/20
:tv: The AutoML Revolution Tutorial Fall AutoML School 2022 2022/10/18

Scientific Publications

Articles

Train/Deploy AutoGluon in the Cloud

:pencil: Citing AutoGluon

If you use AutoGluon in a scientific publication, please refer to our citation guide.

:wave: How to get involved

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

:classical_building: License

This library is licensed under the Apache 2.0 License.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon_timeseries-1.5.0.tar.gz (201.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

autogluon_timeseries-1.5.0-py3-none-any.whl (244.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon_timeseries-1.5.0.tar.gz.

File metadata

  • Download URL: autogluon_timeseries-1.5.0.tar.gz
  • Upload date:
  • Size: 201.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for autogluon_timeseries-1.5.0.tar.gz
Algorithm Hash digest
SHA256 b29c908a90618bceb93e902626f256e112d161f22045fff8d4249955cb742016
MD5 d6d20c09937ffe3dbc4afb6fddb4f494
BLAKE2b-256 e991d511e8728d69c07a9f0448abcdedb8069f6a3b42929dad20287b6db5451c

See more details on using hashes here.

File details

Details for the file autogluon_timeseries-1.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon_timeseries-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8c27218906a557f1ec784ace90259fc17646feb47efd3f425e56eb25dd76a41d
MD5 d83d87cb595844a12a0d9d95ccbeb57d
BLAKE2b-256 cf91a5110b596b1e7618ac7742af81295e9cd5bd1a66a81f29531228f1346bf8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page