Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Autograd compatible approximations to the gamma family of functions

Project description


PyPI version

autograd compatible approximations to the derivatives of the Gamma-family of functions.


from autograd import grad
from autograd_gamma import gammainc, gammaincc, gammaincln, gammainccln

grad(gammainc, argnum=0)(1., 2.)
grad(gammaincc, argnum=0)(1., 2.)

# logarithmic functions too.
grad(gammaincln, argnum=0)(1., 2.)
grad(gammainccln, argnum=0)(1., 2.)

from autograd_gamma import betainc, betaincln

grad(betainc, argnum=0)(1., 2., 0.5)
grad(betainc, argnum=1)(1., 2., 0.5)

# logarithmic functions too.
grad(betaincln, argnum=0)(1., 2., 0.5)
grad(betaincln, argnum=1)(1., 2., 0.5)

Long-term goal

Build and improve upon the derivative of the upper and lower incomplete gamma functions. Eventually, if we have a fast analytical solution, we will merge into the autograd library.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for autograd-gamma, version 0.4.1
Filename, size File type Python version Upload date Hashes
Filename, size autograd_gamma-0.4.1-py2.py3-none-any.whl (3.7 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size autograd_gamma-0.4.1-py3-none-any.whl (3.7 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size autograd-gamma-0.4.1.tar.gz (2.5 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page