Scalable time series processing
Project description
autotimeseries
Nixtla SDK. Time Series Forecasting pipeline at scale.
autotimeseries is a python SDK to consume the APIs developed in https://github.com/Nixtla/nixtla.
Install
PyPI
pip install autotimeseries
How to use
Check the following examples for a full pipeline:
Basic usage
import os
from autotimeseries.core import AutoTS
autotimeseries = AutoTS(bucket_name=os.environ['BUCKET_NAME'],
api_id=os.environ['API_ID'],
api_key=os.environ['API_KEY'],
aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'])
Upload dataset to S3
train_dir = '../data/m5/parquet/train'
# File with target variables
filename_target = autotimeseries.upload_to_s3(f'{train_dir}/target.parquet')
# File with static variables
filename_static = autotimeseries.upload_to_s3(f'{train_dir}/static.parquet')
# File with temporal variables
filename_temporal = autotimeseries.upload_to_s3(f'{train_dir}/temporal.parquet')
Each time series of the uploaded datasets is defined by the column item_id. Meanwhile the time column is defined by timestamp and the target column by demand. We need to pass this arguments to each call.
columns = dict(unique_id_column='item_id',
ds_column='timestamp',
y_column='demand')
Send the job to make forecasts
response_forecast = autotimeseries.tsforecast(filename_target=filename_target,
freq='D',
horizon=28,
filename_static=filename_static,
filename_temporal=filename_temporal,
objective='tweedie',
metric='rmse',
n_estimators=170,
**columns)
Download forecasts
autotimeseries.download_from_s3(filename='forecasts_2021-10-12_19-04-32.csv', filename_output='../data/forecasts.csv')
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file autotimeseries-0.0.7.tar.gz.
File metadata
- Download URL: autotimeseries-0.0.7.tar.gz
- Upload date:
- Size: 13.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8c30f61fd4b7b397320086904d8a35dd7c91f36f6cba0582a6fcfda568c38495
|
|
| MD5 |
2e14a5b67d10c689ae1e2199a5f5f456
|
|
| BLAKE2b-256 |
836ed8a01f71cdbcc0a3fcdc1fd041ba328251449c646710be270b26c111fe8f
|
File details
Details for the file autotimeseries-0.0.7-py3-none-any.whl.
File metadata
- Download URL: autotimeseries-0.0.7-py3-none-any.whl
- Upload date:
- Size: 10.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
534ce9d62ef500265f5b3ab2a7a50306b420bcf122a982f2b62e73e6ea255fb8
|
|
| MD5 |
36ac6683fe645f4e1a2a6b9cafdfa148
|
|
| BLAKE2b-256 |
f365189bec84f24f5fa3511c55a257de46055eaf1da89f118da6d28772bad0da
|