Skip to main content

LLM Trainer

Project description

Axolotl

GitHub License tests codecov Releases
contributors GitHub Repo stars
discord twitter
tests-nightly multigpu-semi-weekly tests

🎉 Latest Updates

  • 2025/06: Magistral with mistral-common tokenizer support has been added to Axolotl. See examples to start training your own Magistral models with Axolotl!
  • 2025/05: Quantization Aware Training (QAT) support has been added to Axolotl. Explore the docs to learn more!
  • 2025/04: Llama 4 support has been added in Axolotl. See examples to start training your own Llama 4 models with Axolotl's linearized version!
  • 2025/03: Axolotl has implemented Sequence Parallelism (SP) support. Read the blog and docs to learn how to scale your context length when fine-tuning.
  • 2025/03: (Beta) Fine-tuning Multimodal models is now supported in Axolotl. Check out the docs to fine-tune your own!
  • 2025/02: Axolotl has added LoRA optimizations to reduce memory usage and improve training speed for LoRA and QLoRA in single GPU and multi-GPU training (DDP and DeepSpeed). Jump into the docs to give it a try.
  • 2025/02: Axolotl has added GRPO support. Dive into our blog and GRPO example and have some fun!
  • 2025/01: Axolotl has added Reward Modelling / Process Reward Modelling fine-tuning support. See docs.

✨ Overview

Axolotl is a tool designed to streamline post-training for various AI models.

Features:

🚀 Quick Start

Requirements:

  • NVIDIA GPU (Ampere or newer for bf16 and Flash Attention) or AMD GPU
  • Python 3.11
  • PyTorch ≥2.6.0

Installation

Using pip

pip3 install -U packaging==23.2 setuptools==75.8.0 wheel ninja
pip3 install --no-build-isolation axolotl[flash-attn,deepspeed]

# Download example axolotl configs, deepspeed configs
axolotl fetch examples
axolotl fetch deepspeed_configs  # OPTIONAL

Using Docker

Installing with Docker can be less error prone than installing in your own environment.

docker run --gpus '"all"' --rm -it axolotlai/axolotl:main-latest

Other installation approaches are described here.

Your First Fine-tune

# Fetch axolotl examples
axolotl fetch examples

# Or, specify a custom path
axolotl fetch examples --dest path/to/folder

# Train a model using LoRA
axolotl train examples/llama-3/lora-1b.yml

That's it! Check out our Getting Started Guide for a more detailed walkthrough.

📚 Documentation

🤝 Getting Help

🌟 Contributing

Contributions are welcome! Please see our Contributing Guide for details.

❤️ Sponsors

Thank you to our sponsors who help make Axolotl possible:

  • Modal - Modal lets you run jobs in the cloud, by just writing a few lines of Python. Customers use Modal to deploy Gen AI models at large scale, fine-tune large language models, run protein folding simulations, and much more.

Interested in sponsoring? Contact us at wing@axolotl.ai

📜 License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

axolotl-0.11.0.tar.gz (366.6 kB view details)

Uploaded Source

File details

Details for the file axolotl-0.11.0.tar.gz.

File metadata

  • Download URL: axolotl-0.11.0.tar.gz
  • Upload date:
  • Size: 366.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for axolotl-0.11.0.tar.gz
Algorithm Hash digest
SHA256 2d13cfc3afcf30a3c41eb7b2794004e8a0ea853d3311bbf9b0c4a7f16db3326b
MD5 117a7ec11a455cc717793bc7c3ab3793
BLAKE2b-256 beff1090f78938cbe4a8776e81a9008d65e9d88c90ccae288a4f21617f5572f8

See more details on using hashes here.

Provenance

The following attestation bundles were made for axolotl-0.11.0.tar.gz:

Publisher: pypi.yml on axolotl-ai-cloud/axolotl

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page