Skip to main content

Kusto Ingest Client

Project description

from import KustoConnectionStringBuilder, DataFormat
from azure.kusto.ingest import QueuedIngestClient, IngestionProperties, FileDescriptor, BlobDescriptor

ingestion_props = IngestionProperties(database="{database_name}", table="{table_name}", data_format=DataFormat.CSV)
client = QueuedIngestClient(KustoConnectionStringBuilder.with_interactive_login("https://ingest-{cluster_name}"))

file_descriptor = FileDescriptor("{filename}.csv", 15360)  # in this example, the raw (uncompressed) size of the data is 15KB (15360 bytes)
client.ingest_from_file(file_descriptor, ingestion_properties=ingestion_props)
client.ingest_from_file("{filename}.csv", ingestion_properties=ingestion_props)

blob_descriptor = BlobDescriptor("https://{path_to_blob}.csv.gz?sas", 51200)  # in this example, the raw (uncompressed) size of the data is 50KB (52100 bytes)
client.ingest_from_blob(blob_descriptor, ingestion_properties=ingestion_props)


Kusto Python Ingest Client Library provides the capability to ingest data into Kusto clusters using Python. It is Python 3.x compatible and supports data types through familiar Python DB API interface.

It’s possible to use the library, for instance, from Jupyter Notebooks which are attached to Spark clusters, including, but not exclusively, Azure Databricks instances.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

azure-kusto-ingest-4.2.0.tar.gz (18.5 kB view hashes)

Uploaded source

Built Distribution

azure_kusto_ingest-4.2.0-py2.py3-none-any.whl (25.3 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page