Skip to main content

Python abstract data request library.

Project description

Description

Abstract data request library powered by the python syntax and reflective concerns.

License Development Status Latest release Supported Python versions Supported Python implementations Download format Build status Code test coverage Downloads Documentation Status Code Health

Installation

pip install b3j0f.requester

Features

This library aims to access to system data from a generic and python API.

Reflective concerns permit to not consider only data access with four create/read/update/delete operations but with a more one which is a service execution. Therefore, the main acronym of this library is CRUDE

In a minimal case, there are 6 concepts to know:

  • Driver: in charge of accessing data.

  • Expression and Function: refers to data models and system functions.

  • Transaction: refers to data access transaction.

  • Context: execution context such as a dict where keys are expressions, and values are system data.

Let a data models containing a table ‘user’ where fields are ‘name’ and ‘age’.

A filter about users of age at least 10 is:

Expression.user.age > 10

A selection of number of users is:

Function.count(Expression.user)

Now, imagine you have two systems, called respectivelly Administration and Club. You might want to get users who have the same name and are at least twenty years old, in both systems like that:

(Expression.Administration.user.name == Expression.Club.user.name) & (Expression.user.age >= 20)

Therefore, all python operators are overriden by the object Expression in order to let you requests in a pythonic way.

Examples

Refers to a data

from b3j0f.requester import Expression as E, Function as F

# ways to refers to the field 'user.id'.
E.user.id
E('user.id')
E('user').id

# ways to refers to the function 'count' on the data 'user'.
F.count(E.user)
F('count')(E.user)
F('count', params=[E.user])

# In a multi system use, a system is seen such as a data:
# access to users from a system administration.
E.Administration.user
E('Administration.user')
E('Administration').user

Create data from a system

from b3j0f.requester import Driver

class MyDriver(Driver):
   """implement your own driver..."""

driver = MyDriver()

# ways to create data from the request manager
driver.create(name='C.user', values={'name': 'john'})
driver.create(name=E.C.user, values={'name': 'john'})

# create several data at once with method chaining and transaction
with driver.open() as transaction:
   """transaction.create(...).update(...)"""

The with ensure the transaction is commited or rollbacked in case of any error.

trans = driver.open()

# it is also possible to create a hierarchy of transaction with trans.open()

trans.create('C.user', {'name': 'john'}).create(E.C.user, {'name': 'paul'}).process(Create('C.user', {'name': 'david'}), Create(E.C.user, {'name': 'thomas'})).commit()

# create transaction with autocommit and with an historical context
# autocommit and ctx can be changed at runtime
trans = driver.open(autocommit=True, ctx=Context())

Read data from a system

from b3j0f.requester import Read as R, Join as J

# get a read resource with specific offset
crud = driver.read(offset=5)

# add filters
crud &= (E.A.id == E.B.id) & (F.now > E.B.timestamp)
# same as
crud.where(query)
# and with a "or"
crud.orwhere(query); crud |= query

# method chaining and max 10 data, sorted by A.id and grouped by A.name
result = crud.sortby(E.A.id).groupby(E.A.name).join('FULL').select()[:10]

for data in result:  # display A and B
   print(data['A'], data['B'])

# or get the result via a callback
crud(async=True, callback=lambda result: None)

# read data with a Read object
read = R(limit=10, groupby=E.A.name, join=J.FULL, sort=E.A.name)
result = trans.process(read).ctx[read]  # get context request which contain all data from systems and a transaction with autocommit

# read data from the driver with default parameters
AandB = driver['A', 'B']

Update data from a system

from b3j0f.requester import Update as U

# udpate data from the driver
driver.update(name='user', values={'name': 'john'})
driver.update(name=E.user, values={'name': 'john'})
driver.update(name=E.user, values={'name': 'john'})
driver[E.user] = {'name': 'john'}
driver['user'] = {'name': 'john'}

# update data from the transaction
trans.update(name=E.user, values={'name': 'john'})
trans.update('user', {'name': 'john'})
trans['user'] = {'name': 'john'}
trans[E.user] = {'name': 'john'}
trans.process(U(name='user', values={'name': 'john'}))
trans.process(U(name=E.user, values={'name': 'john'}))

Delete data from a system

from b3j0f.requester import Delete as D

# delete a user from a driver
driver.delete(names=['user'], query=query)
driver.delete(names=[E.user], query=query)
del driver['user']
del driver[E.user]

# delete a user from a transaction
trans.delete(names=[D.user], query=query)
trans.delete(names=['user'], query=query)
del trans['user']
del trans[E.user]
trans.process(names=[D('user')], query=query)
trans.process(names=[D(E.user)], query=query)

Perspectives

  • wait feedbacks during 6 months before passing it to a stable version.

  • Cython implementation.

Donation

I'm grateful for gifts, but don't have a specific funding goal.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

b3j0f.requester-0.0.3.zip (85.3 kB view details)

Uploaded Source

b3j0f.requester-0.0.3.tar.gz (38.0 kB view details)

Uploaded Source

Built Distribution

b3j0f.requester-0.0.3-py2.py3-none-any.whl (79.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file b3j0f.requester-0.0.3.zip.

File metadata

File hashes

Hashes for b3j0f.requester-0.0.3.zip
Algorithm Hash digest
SHA256 4b790d04bcb24aac57bc71e287210d4d8fffa48ed1f5bf56763493ea424b14a8
MD5 4308e664a1cc891d778a24ad41fd2bad
BLAKE2b-256 b1d37be82a61f6860100b4b75cc5eacc09a19ee7e35f70c88a4f2e352e19edcb

See more details on using hashes here.

File details

Details for the file b3j0f.requester-0.0.3.tar.gz.

File metadata

File hashes

Hashes for b3j0f.requester-0.0.3.tar.gz
Algorithm Hash digest
SHA256 ab2df11bfb3ec716c96ef6590a4e48a25fb6b457855324ed26284057674e364a
MD5 ed1bf5c89dfd7fa3217dd1c543870dff
BLAKE2b-256 a5342a0406e315230b6c4b8c3443756ade56281f37c23341acdb6ff392ec734e

See more details on using hashes here.

File details

Details for the file b3j0f.requester-0.0.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for b3j0f.requester-0.0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 161b91f99dd87b9b233cb7d601b882ac77854490f17d5754d23527446fafca36
MD5 34945e000bb6a3234cae098e77d6232c
BLAKE2b-256 51a8b85702a9c4f49f2f4be833a206ce89d83af8de467af985b7366a84c40f2f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page