Skip to main content

A boolean algebra toolkit to: evaluate expressions, truth tables, and produce logic diagrams

Project description

Boolean Algebra Toolkit

  • Truth Table to Boolean Expression and Logic Diagram Generator
  • Boolean Expression Evaluator and Truth Table Generator

Installation

pip install balg-MustafaAamir==0.0.1

Usage

Token Equivalent
& AND
^ XOR
+ OR
~ NOT
[A-z] Variable
from boolean import Boolean
booleanObject = Boolean()
  1. To generate an expression's truth table:
input_expression: str = "~(A & B & C)+(A & B)+(B & C)"
tt: str = booleanObject.expr_to_tt(input_expression)
  1. To generate an expression given the minterms and variables:
variables: List[str] = ['A', 'B', 'C']
minterms: List[int]  = [0, 1, 3, 7]
expression: str   = booleanObject.tt_to_expr(variables, minterms)
  1. To generate a logic diagram given an expression:
input_expression: str = "~(A & B & C)+(A & B)+(B & C)"
file_name: str = "logic_diagram12"
format: str = "png"
directory: str = "examples" # stores in the current directory by default
booleanObject.expr_to_dg(input_expression, file_name, directory, format)
  1. To generate a logic diagram given variables and minterms
variables: List[str] = ['A', 'B', 'C']
minterms: List[int]  = [0, 1, 3, 7]
file_name: str = "logic_diagram12"
directory: str = "examples"
format: str = "png"
booleanObject.tt_to_dg(variables, minterms, file_name, directory, format)

Example Diagrams

((A & B) & C) + (~C) logic_diagram

(A & B) + (~(A & B) & ~C) + (C & B) logic_diagram

Other diagrams can be found in diagrams/

Explanation of the Quine-McCluskey Algorithm

This section deals with converting a given truth table to a minimized boolean expression using the Quine-McCluskey algorithm and producing a logic diagram.

Overview

  1. Initialize variables & Minterms
  2. Identify essential Prime implicants
  3. Minimize & Synthesize the boolean function

Initialization

  • The synthesizer is initialized with a list of character variables and minterms:
  • Minterms refer to values for which the output is 1.
  • Prime implicants are found by repeatedly combining minterms that differ by only one variable:

The Quine-McCluskey Algorithm


               The Quine-McCluskey Algorithm

+-----------------------------------+
| initialize variables and minterms |
| variables := [A, B, C]            |
| minterms  := [0, 3, 6, 7]         |
| minters   := [000, 011, 110, 111] |
+-----------------------------------+
                |
                /
               /
               |
               V
        +-----------------------+
        | find prime_implicants |
        | | A | B | C |  out |  |
        | |---|---|---|------|  |
        | | 0 | 0 | 0 |  1   |  |
        | | 0 | 0 | 1 |  0   |  |
        | | 0 | 1 | 0 |  0   |  |
        | | 0 | 1 | 1 |  1   |  |
        | | 1 | 0 | 0 |  0   |  |
        | | 1 | 0 | 1 |  0   |  |
        | | 1 | 1 | 0 |  1   |  |
        | | 1 | 1 | 1 |  1   |  |
        +-----------------------+
                 |
                 |
                  \
                   |
                   V
+----------------------------------+
|  | group | minterm | A | B | C | |
|  |-------|---------|---|---|---| |
|  |   0   | m[0]    | 0 | 0 | 0 | |
|  |   2   | m[1]    | 0 | 1 | 1 | |
|  |       | m[2]    | 1 | 1 | 0 | |
|  |   3   | m[3]    | 1 | 1 | 1 | |
|  |-------|---------|---|---|---| |
+----------------------------------+
                    \
                     \
                      |
                      V
        +-------------------------------------------+
        | find pair where only one variable differs |
        | | group | minterm    | A | B | C |  expr  |
        | |-------|------------|---|---|---|--------|
        | |   0   | m[0]       | 0 | 0 | 0 | ~(ABC) |
        | |   2   | m[1]-m[3]  | _ | 1 | 1 |  BC    |
        | |       | m[2]-m[3]  | 1 | 1 | _ |  AB    |
        +-------------------------------------------+
                        |
                       /
                      |
                      V
    +-------------------------------------------+
    |  since the bit-diff between pairs in each |
    |  class is > 1, we move onto the next step |
    |                                           |
    |   |  expr  | m0  | m1  | m2  | m3   |     |
    |   |--------|-----|-----|-----|------|     |
    |   | ~(ABC) | X   |     |     |      |     |
    |   |   BC   |     |  X  |     |      |     |
    |   |   AB   |     |     |  X  |      |     |
    |   |--------|-----|-----|-----|------|     |
    +-------------------------------------------+
                            |
                            |
                           /
                          |
                          V
              +-----------------------------------------+
              | If each column contains one element     |
              | the expression can't be eliminated.     |
              | Therefore, the resulting expression is: |
              |         ~(ABC) + BC + AB                |
              +-----------------------------------------+



Tips

  1. Use parentheses when the order of operations are ambiguous.
  2. The precedence is as follows, starting from the highest: NOT -> OR -> (AND, XOR)
  3. Modify BooleanExpression.tt to produce markdown tables for a better UI

Documentation (for developers)

class TruthTableSynthesizer(variables: List[str], minterms: List[int])
class BooleanExpression(expression: str)
class Boolean()
TruthTableSynthesizer.decimal_to_binary(num: int) -> str
TruthTableSynthesizer.combine_implicants(implicants: List[Set[str]]) -> Set[str]
TruthTableSynthesizer.get_prime_implicants() -> Set[str]
TruthTableSynthesizer.covers_minterm(implicant: str, minterm: str) -> bool
TruthTableSynthesizer.get_essential_prime_implicants(prime_implicants: Set[str]) -> Set[str]
TruthTableSynthesizer.minimize_function(prime_implicants: Set[str], essential_implicants: Set[str]) -> List[str]
TruthTableSynthesizer.implicant_to_expression(implicant: str) -> str
TruthTableSynthesizer.synthesize() -> str

BooleanExpression.to_postfix(inifx: str) -> List[str]
BooleanExpression.evaluate(values: Dict[str, bool]) -> bool
BooleanExpression.truth_table() -> List[Tuple[Dict[str, bool], bool]]
BooleanExpression.tt() -> str
BooleanExpression.generate_logic_diagram() -> graphviz.Digraph

Boolean.expr_to_tt(input_expression: str) -> str
Boolean.tt_to_expr(variables: List[str], minterms: List[int]) -> str
Boolean.tt_to_dg(variables: List[str], minterms: List[int], file: str | None = None, directory: str | None = None, format: str = "png") -> str
Boolean.expr_to_dg(input_expression: str, file: str | None = None, directory: str | None = None, format: str = "png") -> str

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

balg-0.0.1-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file balg-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: balg-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for balg-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 28f21920a65c7f5bf13e9312d13b289fc02901bcf3ccd526c7f02bb66aa61a01
MD5 40ef9e0b4c4a49759191f3bf13108a40
BLAKE2b-256 8a3c5b88961717f62095e556bad5ca236d4c5e9a27d59253587137306ae845fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page