Skip to main content

A boolean algebra toolkit to evaluate expressions, truth tables, and produce logic diagrams

Project description

Boolean Algebra Toolkit

  • Truth Table to Boolean Expression and Logic Diagram Generator
  • Boolean Expression Evaluator and Truth Table Generator

Installation

pip install balg

Usage

Token Equivalent
& AND
^ XOR
+ OR
~ NOT
[A-z] Variable
from balg.boolean import Boolean
booleanObject = Boolean()
  1. To generate an expression's truth table:
input_expression: str = "~(A & B & C)+(A & B)+(B & C)"
tt: str = booleanObject.expr_to_tt(input_expression)
  1. To generate an expression given the minterms and variables:
variables: List[str] = ['A', 'B', 'C']
minterms: List[int]  = [0, 1, 3, 7]
expression: str   = booleanObject.tt_to_expr(variables, minterms)
  1. To generate a logic diagram given an expression:
input_expression: str = "~(A & B & C)+(A & B)+(B & C)"
file_name: str = "logic_diagram12"
format: str = "png"
directory: str = "examples" # stores in the current directory by default
booleanObject.expr_to_dg(input_expression, file_name, directory, format)
  1. To generate a logic diagram given variables and minterms
variables: List[str] = ['A', 'B', 'C']
minterms: List[int]  = [0, 1, 3, 7]
file_name: str = "logic_diagram12"
directory: str = "examples"
format: str = "png"
booleanObject.tt_to_dg(variables, minterms, file_name, directory, format)
  1. To assert equality for expressions
expressions_list = ["(A & ~B) + (~A & B)", "(A ^ B)", "(A + B) & ~(A & B)"]
ret = booleanObject.expr_cmp(expression_list) # returns True
  1. To simplify expressions (ambiguous):
simplified_expr: str = booleanObject.expr_simplify("~(A) + ~(B)")
  1. To generate random expressions:
#generating a single expression
expression: str = boolean.generate_expression(max_depth=4, max_identifiers=5)

#generating multiple expressions
expression: List[str] = boolean.generate_expressions(max_depth=4, max_identifiers=5, count=100)

#max_depth refers to nesting depth:
expression = "A" #nesting_depth = 0
expression = "(((4)))"  #nesting_depth = 3

#max_identifiers refers to the number of identifiers allowed in an expression
expression = "A + B + C" # has 3 identifiers

Example Diagrams

((A & B) & C) + (~C)

logic_diagram

(A & B) + (~(A & B) & ~C) + (C & B)

logic_diagram

Other diagrams can be found in the diagrams/ directory

Explanation of the Quine-McCluskey Algorithm

This section deals with converting a given truth table to a minimized boolean expression using the Quine-McCluskey algorithm and producing a logic diagram.

Overview

  1. Initialize variables & Minterms
  2. Identify essential Prime implicants
  3. Minimize & Synthesize the boolean function

Initialization

  • The synthesizer is initialized with a list of character variables and minterms:
  • Minterms refer to values for which the output is 1.
  • Prime implicants are found by repeatedly combining minterms that differ by only one variable:

The Quine-McCluskey Algorithm


               The Quine-McCluskey Algorithm

+-----------------------------------+
| initialize variables and minterms |
| variables := [A, B, C]            |
| minterms  := [0, 3, 6, 7]         |
| minters   := [000, 011, 110, 111] |
+-----------------------------------+
                |
                /
               /
               |
               V
        +-----------------------+
        | find prime_implicants |
        | | A | B | C |  out |  |
        | |---|---|---|------|  |
        | | 0 | 0 | 0 |  1   |  |
        | | 0 | 0 | 1 |  0   |  |
        | | 0 | 1 | 0 |  0   |  |
        | | 0 | 1 | 1 |  1   |  |
        | | 1 | 0 | 0 |  0   |  |
        | | 1 | 0 | 1 |  0   |  |
        | | 1 | 1 | 0 |  1   |  |
        | | 1 | 1 | 1 |  1   |  |
        +-----------------------+
                 |
                 |
                  \
                   |
                   V
+----------------------------------+
|  | group | minterm | A | B | C | |
|  |-------|---------|---|---|---| |
|  |   0   | m[0]    | 0 | 0 | 0 | |
|  |   2   | m[1]    | 0 | 1 | 1 | |
|  |       | m[2]    | 1 | 1 | 0 | |
|  |   3   | m[3]    | 1 | 1 | 1 | |
|  |-------|---------|---|---|---| |
+----------------------------------+
                    \
                     \
                      |
                      V
        +-------------------------------------------+
        | find pair where only one variable differs |
        | | group | minterm    | A | B | C |  expr  |
        | |-------|------------|---|---|---|--------|
        | |   0   | m[0]       | 0 | 0 | 0 | ~(ABC) |
        | |   2   | m[1]-m[3]  | _ | 1 | 1 |  BC    |
        | |       | m[2]-m[3]  | 1 | 1 | _ |  AB    |
        +-------------------------------------------+
                        |
                       /
                      |
                      V
    +-------------------------------------------+
    |  since the bit-diff between pairs in each |
    |  class is > 1, we move onto the next step |
    |                                           |
    |   |  expr  | m0  | m1  | m2  | m3   |     |
    |   |--------|-----|-----|-----|------|     |
    |   | ~(ABC) | X   |     |     |      |     |
    |   |   BC   |     |  X  |     |      |     |
    |   |   AB   |     |     |  X  |      |     |
    |   |--------|-----|-----|-----|------|     |
    +-------------------------------------------+
                            |
                            |
                           /
                          |
                          V
              +-----------------------------------------+
              | If each column contains one element     |
              | the expression can't be eliminated.     |
              | Therefore, the resulting expression is: |
              |         ~(ABC) + BC + AB                |
              +-----------------------------------------+

Tips

  1. Use parentheses when the order of operations is ambiguous.
  2. The precedence is as follows, starting from the highest: NOT -> OR -> (AND, XOR)

Documentation (for developers)

class TruthTableSynthesizer(variables: List[str], minterms: List[int])
class BooleanExpression(expression: str)
class Boolean()
class BooleanExpressionGenerator(max_identifiers: int = 5, max_depth: int = 5)
TruthTableSynthesizer.decimal_to_binary(num: int) -> str
TruthTableSynthesizer.combine_implicants(implicants: List[Set[str]]) -> Set[str]
TruthTableSynthesizer.get_prime_implicants() -> Set[str]
TruthTableSynthesizer.covers_minterm(implicant: str, minterm: str) -> bool
TruthTableSynthesizer.get_essential_prime_implicants(prime_implicants: Set[str]) -> Set[str]
TruthTableSynthesizer.minimize_function(prime_implicants: Set[str], essential_implicants: Set[str]) -> List[str]
TruthTableSynthesizer.implicant_to_expression(implicant: str) -> str
TruthTableSynthesizer.synthesize() -> str

BooleanExpression.to_postfix(inifx: str) -> List[str]
BooleanExpression.evaluate(values: Dict[str, bool]) -> bool
BooleanExpression.tt() -> List[Tuple[Dict[str, bool], bool]]
BooleanExpression.fmt_tt() -> str
BooleanExpression.generate_logic_diagram() -> graphviz.Digraph

BooleanExpressionGenerator.generate_expression() -> str
BooleanExpressionGenerator.generate_expressions(number: int = 1) -> List[str]

Boolean.expr_to_tt(input_expression: str) -> str
Boolean.tt_to_expr(variables: List[str], minterms: List[int]) -> str
Boolean.tt_to_dg(variables: List[str], minterms: List[int], file: str | None = None, directory: str | None = None, format: str = "png") -> str
Boolean.expr_to_dg(input_expression: str, file: str | None = None, directory: str | None = None, format: str = "png") -> str
Boolean.expr_simplify(input_expression: str) -> str
Boolean.expr_cmp(expressions: List[str]) -> bool
Boolean.generate_expression(max_identifiers: int=5, max_depth: int=4) -> str
Boolean.generate_expressions(max_identifiers: int=5, max_depth: int=4, number: int) -> List[str]

TODO

  1. Optimize functions 0.5. LaTeX interface
  2. NAND, NOR, XNOR
  3. Implication (X -> Y) and bi-implication (X <-> Y)
  4. Add support for constants (1, 0)
  5. Implement functional completeness testing
  6. Expression comparison by comparing minterms (grammar agnostic)
  7. (improbable) implement Quantum Gates
  8. (improbable) potential integration with Verilog systems

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

balg-0.0.6.tar.gz (193.4 kB view details)

Uploaded Source

Built Distribution

balg-0.0.6-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file balg-0.0.6.tar.gz.

File metadata

  • Download URL: balg-0.0.6.tar.gz
  • Upload date:
  • Size: 193.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for balg-0.0.6.tar.gz
Algorithm Hash digest
SHA256 b1a53c862497d8a4e952a5aa6bb99f2f336353b781138059a0f84e4d71250bed
MD5 01322dccb98e9a07de91ebbbfc323e07
BLAKE2b-256 61d2450b5ba0631e6496d85e27e6a1bc0680820a189d8dea0e969db1ef4cf3c6

See more details on using hashes here.

File details

Details for the file balg-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: balg-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 10.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for balg-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 d266cc55b19852f05a6c1231723df0d5b8c547888c3494ce2e98d9369bbb8355
MD5 57c01fb93ab7e1a148f300f9b3e42b97
BLAKE2b-256 4296b869070690dbc073e50f18cf5aa0c599efefa6c0e66aee5fa6fd43d50146

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page