Project Description
## What it looks like

## How to use it

## How it works

Release History
## Release History

Download Files
## Download Files

When people think of human-readable numbers, they think of rounding to two decimal places and adding a thousands separator. 12,214.17 is already quite an improvement over 12214.16666667. But standard formats for human-readable numbers still have various flaws:

- even with a thousands separator, at a glance you might easily mistake a billion for a trillion
- even when rounding, an amount like 12,214.17 dollars is a lot of number noise for communicating 12.2K
- scientific notation leads to exponents like
`1.22e4`which are hard to interpret because we’re used to working with thousands, millions and billions – orders of magnitudes that are multiples of three - when comparing multiple measurements of the same underlying variable, like the yearly sales numbers for 2010-2015, it’s annoying to have some numbers in thousands and other numbers in millions – you want consistency so that digits in the same position are of the same magnitude

`python-ballpark` introduces *business notation*, an offshoot of
engineering
notation, for
producing better human-readable numbers.

Install with `pip install ballpark` or `pip3 install ballpark`.

numbers | rounded | engineering notation | business notation |
---|---|---|---|

11234.22, 233000.55, 1175125.2 | 11,234.22, 233,000.55, 1,175,125.2 | 11.2E+3, 233E+3, 1.18E+6 | 11K, 233K, 1,180K |

111, 1111.23, 1175125.234 | 111, 1,111.23, 1,175,125.23 | 111, 1.11E+3, 1.18E+6 | 0.11K, 1.11K, 1,180.00K |

>>> from ballpark import human, scientific, engineering, business >>> business([11234.22, 233000.55, 1175125.2]) ['11K', '233K', '1,180K'] >>> >>> # or use the shortcut functions >>> from ballpark import H, S, E, B >>> B([11234.22, 233000.55, 1175125.2]) ['11K', '233K', '1,180K'] >>> >>> # all notations accept single numbers too, but then we can't guarantee >>> # that all numbers will have the same prefix (kilo, mega etc.) >>> [B(value) for value in [11234.22, 233000.55, 1175125.2]] ['11.2K', '233K', '1.18M']

business(values, precision=3, prefix=True, prefixes=SI, statistic=median)

**precision:**the amount of significant digits; when necessary,`business`will round beyond the decimal sign as well: in the example above,`1175125.2`was turned into`1,180K`rather than`1,175K`to retain only 3 significant digits**prefix:**whether to use SI prefixes like m (milli), K (kilo) and so on instead of scientific exponents like E+03**prefixes:**a mapping of orders of magnitude to prefixes, e.g.`{-3: 'm', 3: 'K'}`, allowing you to customize the prefixes, for example using B for billion instead of T for tera**statistic:**a function which returns the reference number that will determine the order of magnitude for the entire group of numbers, so that for example when the reference number is 233K, smaller numbers like 11K won’t have any more numbers after the comma and numbers like 1,180K won’t jump an order of magnitude to 1.18M; the median often works well, but if you want more precision for small outliers, try`ballpark.statistics.Q1`or even Python’s builtin`min`

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help | Version | File Type | Upload Date |
---|---|---|---|

ballpark-1.1.1.tar.gz (5.2 kB) Copy SHA256 Checksum SHA256 | – | Source | Feb 8, 2016 |