Bayesian Approximate Reinforcement Learning (BARL)
Project description
BARL - Bayesian Approximate Reinforcement Learning
This package should serve as a collection of tools to do RL in general and in particular bayesian RL.
The Main Features(Jul 2019):
- estimators
- agents
- environments
- simulations & visualisation
Installation:
PIP:
pip3 install barl
Github:
git clone https://github.com/ai-nikolai/barl
cd barl
pip3 install -e .
Usage:
Testing
cd barl
pytest
Experiments:
cd barl
cd experiments
python3 experiments_mab.py
Scripts:
import barl
env = barl.environments.MultiArmedBandit(arms=4)
agent1 = barl.agents.baselines.RandomActionsSampler(numActions=4)
total, arlist, _ = barl.simulations.run_state_less_agent_and_env( environment=env, agent=agent1, N=100)
barl.utils.plotting.plot_reward_over_time_from_ar(arlist)
Copyright (C) - Nikolai Rozanov 2019-Present
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
barl-0.0.0.5.tar.gz
(7.5 kB
view hashes)
Built Distribution
barl-0.0.0.5-py3-none-any.whl
(16.3 kB
view hashes)