Skip to main content

Bayesian Approximate Reinforcement Learning (BARL)

Project description

BARL - Bayesian Approximate Reinforcement Learning

This package should serve as a collection of tools to do RL in general and in particular bayesian RL.

The Main Features(Jul 2019):

  1. estimators
  2. agents
  3. environments
  4. simulations & visualisation

Installation:

PIP:

pip3 install barl

Github:

git clone https://github.com/ai-nikolai/barl
cd barl
pip3 install -e .

Usage:

Testing

cd barl
pytest

Experiments:

cd barl
cd experiments
python3 experiments_mab.py

Scripts:

import barl

env = barl.environments.MultiArmedBandit(arms=4)

agent1 = barl.agents.baselines.RandomActionsSampler(numActions=4)

total, arlist, _ = barl.simulations.run_state_less_agent_and_env( environment=env, agent=agent1, N=100)

barl.utils.plotting.plot_reward_over_time_from_ar(arlist)

Copyright (C) - Nikolai Rozanov 2019-Present

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for barl, version 0.0.0.5
Filename, size File type Python version Upload date Hashes
Filename, size barl-0.0.0.5-py3-none-any.whl (16.3 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size barl-0.0.0.5.tar.gz (7.5 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page