Skip to main content

Deep learning model for detecting and classifying bat echolocation calls in high frequency audio recordings.

Project description

BatDetect2

Code for detecting and classifying bat echolocation calls in high frequency audio recordings.

Getting started

Python Environment

We recommend using an isolated Python environment to avoid dependency issues. Choose one of the following options:

  • Install the Anaconda Python 3.10 distribution for your operating system from here. Create a new environment and activate it:
conda create -y --name batdetect2 python==3.10
conda activate batdetect2
  • If you already have Python installed (version >= 3.8,< 3.11) and prefer using virtual environments then:
python -m venv .venv
source .venv/bin/activate

Installing BatDetect2

You can use pip to install batdetect2:

pip install batdetect2

Alternatively, download this code from the repository (by clicking on the green button on top right) and unzip it. Once unzipped, run this from extracted folder.

pip install .

Make sure you have the environment activated before installing batdetect2.

Try the model

  1. You can try a demo of the model (for UK species) on huggingface.

  2. Alternatively, click here to run the model using Google Colab. You can also run this notebook locally.

Running the model on your own data

After following the above steps to install the code you can run the model on your own data.

Using the command line

You can run the model by opening the command line and typing:

batdetect2 detect AUDIO_DIR ANN_DIR DETECTION_THRESHOLD

e.g.

batdetect2 detect example_data/audio/ example_data/anns/ 0.3

AUDIO_DIR is the path on your computer to the audio wav files of interest. ANN_DIR is the path on your computer where the model predictions will be saved. The model will output both .csv and .json results for each audio file. DETECTION_THRESHOLD is a number between 0 and 1 specifying the cut-off threshold applied to the calls. A smaller number will result in more calls detected, but with the chance of introducing more mistakes.

There are also optional arguments, e.g. you can request that the model outputs features (i.e. estimated call parameters) such as duration, max_frequency, etc. by setting the flag --spec_features. These will be saved as *_spec_features.csv files: batdetect2 detect example_data/audio/ example_data/anns/ 0.3 --spec_features

You can also specify which model to use by setting the --model_path argument. If not specified, it will default to using a model trained on UK data e.g. batdetect2 detect example_data/audio/ example_data/anns/ 0.3 --model_path models/Net2DFast_UK_same.pth.tar

Using the Python API

If you prefer to process your data within a Python script then you can use the batdetect2 Python API.

from batdetect2 import api

AUDIO_FILE = "example_data/audio/20170701_213954-MYOMYS-LR_0_0.5.wav"

# Process a whole file
results = api.process_file(AUDIO_FILE)

# Or, load audio and compute spectrograms
audio = api.load_audio(AUDIO_FILE)
spec = api.generate_spectrogram(audio)

# And process the audio or the spectrogram with the model
detections, features, spec = api.process_audio(audio)
detections, features = api.process_spectrogram(spec)

# Do something else ...

You can integrate the detections or the extracted features to your custom analysis pipeline.

Training the model on your own data

Take a look at the steps outlined in finetuning readme here for a description of how to train your own model.

Data and annotations

The raw audio data and annotations used to train the models in the paper will be added soon. The audio interface used to annotate audio data for training and evaluation is available here.

Warning

The models developed and shared as part of this repository should be used with caution. While they have been evaluated on held out audio data, great care should be taken when using the model outputs for any form of biodiversity assessment. Your data may differ, and as a result it is very strongly recommended that you validate the model first using data with known species to ensure that the outputs can be trusted.

FAQ

For more information please consult our FAQ.

Reference

If you find our work useful in your research please consider citing our paper which you can find here:

@article{batdetect2_2022,
    title     = {Towards a General Approach for Bat Echolocation Detection and Classification},
    author    = {Mac Aodha, Oisin and  Mart\'{i}nez Balvanera, Santiago and  Damstra, Elise and  Cooke, Martyn and  Eichinski, Philip and  Browning, Ella and  Barataudm, Michel and  Boughey, Katherine and  Coles, Roger and  Giacomini, Giada and MacSwiney G., M. Cristina and  K. Obrist, Martin and Parsons, Stuart and  Sattler, Thomas and  Jones, Kate E.},
    journal   = {bioRxiv},
    year      = {2022}
}

Acknowledgements

Thanks to all the contributors who spent time collecting and annotating audio data.

TODOs

  • Release the code and pretrained model
  • Release the datasets and annotations used the experiments in the paper
  • Add the scripts used to generate the tables and figures from the paper

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

batdetect2-1.3.0.tar.gz (22.7 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

batdetect2-1.3.0-py3-none-any.whl (7.1 MB view details)

Uploaded Python 3

File details

Details for the file batdetect2-1.3.0.tar.gz.

File metadata

  • Download URL: batdetect2-1.3.0.tar.gz
  • Upload date:
  • Size: 22.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for batdetect2-1.3.0.tar.gz
Algorithm Hash digest
SHA256 05f3e00cda6fcc01b356eff1258e27932c47786dd07643d946669457175a6577
MD5 259839253db2101cb8ea4ac53946a3ee
BLAKE2b-256 deb11af4320d6a4bb995623da93a5bbc9cf305d587c392c30ea1d27bdc2cb163

See more details on using hashes here.

File details

Details for the file batdetect2-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: batdetect2-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for batdetect2-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 154ca666b9a4141c524fb21d0d44adcd2262243be27276a8d54aa3a9212e176f
MD5 b79f615e1e84a99484ed03a51351a288
BLAKE2b-256 e9d62d1b9c8feaefe6d727a6b54ff2f892acd3c7ebeac2d9ce3e936bca5b59dc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page