Skip to main content

Benchmark toolkit for optimization

Project description

Benchmark repository for optimization
=====================================

|Test Status| |Python 3.6+| |codecov|

BenchOpt is a benchmarking suite for optimization algorithms.
It is built for simplicity, transparency, and reproducibility.

Benchopt is implemented in Python, and can run algorithms
written in **many programming languages**
(`example <https://benchopt.github.io/auto_examples/plot_run_benchmark_python_R.html>`_).
So far, Benchopt has been tested with `Python <https://www.python.org/>`_,
`R <https://www.r-project.org/>`_, `Julia <https://julialang.org/>`_
and `C/C++ <https://isocpp.org/>`_ (compiled binaries with a command line interface).
Programs available via
`conda <https://docs.conda.io/en/latest/>`_ should be compatible.

BenchOpt is run through a command line interface as described
in the `API Documentation <https://benchopt.github.io/api.html>`_.
Replicating an optimization benchmark should
be **as simple as doing**:

.. code-block::

conda create -n benchopt python
conda activate benchopt
pip install benchopt
git clone https://github.com/benchopt/benchmark_logreg_l2
cd benchmark_logreg_l2
benchopt install -e . -s lightning -s sklearn
benchopt run -e . --config ./config_example.yml

Running this command will give you a benchmark plot on l2-regularized
logistic regression:

.. figure:: https://benchopt.github.io/_images/sphx_glr_plot_run_benchmark_001.png
:target: how.html
:align: center
:scale: 80%

See the `Available optimization problems`_ below.

Learn how to `create a new benchmark <https://benchopt.github.io/how.html>`_
using the `benchmark template <https://github.com/benchopt/template_benchmark>`_.

Install
--------

The command line tool to run the benchmarks can be installed through `pip`. In order to allow `benchopt`
to automatically install solvers dependencies, the install needs to be done in a `conda` environment.


.. code-block::

conda create -n benchopt python
conda activate benchopt

To get the **latest release**, use:

.. code-block::

pip install benchopt

To get the **latest development version**, use:

.. code-block::

pip install -U -i https://test.pypi.org/simple/ benchopt

Then, existing benchmarks can be retrieved from git or created locally.
For instance, the benchmark for Lasso can be retrieved with:

.. code-block::

git clone https://github.com/benchopt/benchmark_lasso


Command line interface
----------------------

The preferred way to run the benchmarks is through the command line interface.
To run the Lasso benchmark on all datasets and with all solvers, run:

.. code-block::

benchopt run --env ./benchmark_lasso

To get more details about the different options, run:

.. code-block::

benchopt run -h

or read the `CLI documentation <https://benchopt.github.io/cli.html>`_.

Benchopt also provides a Python API described in the
`API documentation <https://benchopt.github.io/api.html>`_.


Available optimization problems
-------------------------------

.. list-table::
:widths: 70 15 15
:header-rows: 1

* - Problem
- Results
- Build Status
* - `Ordinary Least Squares (OLS) <https://github.com/benchopt/benchmark_ols>`_
- `Results <https://benchopt.github.io/results/benchmark_ols.html>`__
- |Build Status OLS|
* - `Non-Negative Least Squares (NNLS) <https://github.com/benchopt/benchmark_nnls>`_
- `Results <https://benchopt.github.io/results/benchmark_nnls.html>`__
- |Build Status NNLS|
* - `LASSO: L1-Regularized Least Squares <https://github.com/benchopt/benchmark_lasso>`_
- `Results <https://benchopt.github.io/results/benchmark_lasso.html>`__
- |Build Status Lasso|
* - `LASSO Path <https://github.com/jolars/benchmark_lasso_path>`_
- `Results <https://benchopt.github.io/results/benchmark_lasso_path.html>`__
- |Build Status Lasso Path|
* - `Elastic Net <https://github.com/benchopt/benchmark_elastic_net>`_
-
- |Build Status ElasticNet|
* - `MCP <https://github.com/benchopt/benchmark_mcp>`_
- `Results <https://benchopt.github.io/results/benchmark_mcp.html>`__
- |Build Status MCP|
* - `L2-Regularized Logistic Regression <https://github.com/benchopt/benchmark_logreg_l2>`_
- `Results <https://benchopt.github.io/results/benchmark_logreg_l2.html>`__
- |Build Status LogRegL2|
* - `L1-Regularized Logistic Regression <https://github.com/benchopt/benchmark_logreg_l1>`_
- `Results <https://benchopt.github.io/results/benchmark_logreg_l1.html>`__
- |Build Status LogRegL1|
* - `L2-regularized Huber regression <https://github.com/benchopt/benchmark_huber_l2>`_
-
- |Build Status HuberL2|
* - `L1-Regularized Quantile Regression <https://github.com/benchopt/benchmark_quantile_regression>`_
- `Results <https://benchopt.github.io/results/benchmark_quantile_regression.html>`__
- |Build Status QuantileRegL1|
* - `Linear SVM for Binary Classification <https://github.com/benchopt/benchmark_linear_svm_binary_classif_no_intercept>`_
-
- |Build Status LinearSVM|
* - `Linear ICA <https://github.com/benchopt/benchmark_linear_ica>`_
-
- |Build Status LinearICA|
* - `Approximate Joint Diagonalization (AJD) <https://github.com/benchopt/benchmark_jointdiag>`_
-
- |Build Status JointDiag|
* - `1D Total Variation Denoising <https://github.com/benchopt/benchmark_tv_1d>`_
-
- |Build Status TV1D|
* - `2D Total Variation Denoising <https://github.com/benchopt/benchmark_tv_2d>`_
-
- |Build Status TV2D|
* - `ResNet Classification <https://github.com/benchopt/benchmark_resnet_classif>`_
- `Results <https://benchopt.github.io/results/benchmark_resnet_classif.html>`__
- |Build Status ResNetClassif|


Citing Benchopt
---------------

If you use ``Benchopt`` in a scientific publication, please cite the following paper

.. code-block:: bibtex

@article{benchopt,
author = {Moreau, Thomas and Massias, Mathurin and Gramfort, Alexandre and Ablin, Pierre
and Bannier, Pierre-Antoine and Charlier, Benjamin and Dagréou, Mathieu and Dupré la Tour, Tom
and Durif, Ghislain and F. Dantas, Cassio and Klopfenstein, Quentin
and Larsson, Johan and Lai, En and Lefort, Tanguy and Malézieux, Benoit
and Moufad, Badr and T. Nguyen, Binh and Rakotomamonjy, Alain and Ramzi, Zaccharie
and Salmon, Joseph and Vaiter, Samuel},
title = {Benchopt: Reproducible, efficient and collaborative optimization benchmarks},
year = {2022},
url = {https://arxiv.org/abs/2206.13424}
}


.. |Test Status| image:: https://github.com/benchopt/benchopt/actions/workflows/test.yml/badge.svg
:target: https://github.com/benchopt/benchopt/actions/workflows/test.yml
.. |Python 3.6+| image:: https://img.shields.io/badge/python-3.6%2B-blue
:target: https://www.python.org/downloads/release/python-360/
.. |codecov| image:: https://codecov.io/gh/benchopt/benchopt/branch/master/graph/badge.svg
:target: https://codecov.io/gh/benchopt/benchopt

.. |Build Status OLS| image:: https://github.com/benchopt/benchmark_ols/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_ols/actions
.. |Build Status NNLS| image:: https://github.com/benchopt/benchmark_nnls/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_nnls/actions
.. |Build Status Lasso| image:: https://github.com/benchopt/benchmark_lasso/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_lasso/actions
.. |Build Status Lasso Path| image:: https://github.com/jolars/benchmark_lasso_path/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_lasso_path/actions
.. |Build Status ElasticNet| image:: https://github.com/benchopt/benchmark_elastic_net/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_elastic_net/actions
.. |Build Status MCP| image:: https://github.com/benchopt/benchmark_mcp/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_mcp/actions
.. |Build Status LogRegL2| image:: https://github.com/benchopt/benchmark_logreg_l2/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_logreg_l2/actions
.. |Build Status LogRegL1| image:: https://github.com/benchopt/benchmark_logreg_l1/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_logreg_l1/actions
.. |Build Status HuberL2| image:: https://github.com/benchopt/benchmark_huber_l2/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_huber_l2/actions
.. |Build Status QuantileRegL1| image:: https://github.com/benchopt/benchmark_quantile_regression/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_quantile_regression/actions
.. |Build Status LinearSVM| image:: https://github.com/benchopt/benchmark_linear_svm_binary_classif_no_intercept/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_linear_svm_binary_classif_no_intercept/actions
.. |Build Status LinearICA| image:: https://github.com/benchopt/benchmark_linear_ica/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_linear_ica/actions
.. |Build Status JointDiag| image:: https://github.com/benchopt/benchmark_jointdiag/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_jointdiag/actions
.. |Build Status TV1D| image:: https://github.com/benchopt/benchmark_tv_1d/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_tv_1d/actions
.. |Build Status TV2D| image:: https://github.com/benchopt/benchmark_tv_2d/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_tv_2d/actions
.. |Build Status ResNetClassif| image:: https://github.com/benchopt/benchmark_resnet_classif/workflows/Tests/badge.svg
:target: https://github.com/benchopt/benchmark_resnet_classif/actions

BSD 3-Clause License

Copyright (c) 2019–2022 The Benchopt developers.
All rights reserved.


Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

c. Neither the name of the Benchopt Developers nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.


THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

benchopt-1.3.0.tar.gz (363.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

benchopt-1.3.0-py3-none-any.whl (149.5 kB view details)

Uploaded Python 3

File details

Details for the file benchopt-1.3.0.tar.gz.

File metadata

  • Download URL: benchopt-1.3.0.tar.gz
  • Upload date:
  • Size: 363.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for benchopt-1.3.0.tar.gz
Algorithm Hash digest
SHA256 3b7d5faa0e7635b1674b2a8f6f9bb856c44e89bad3c2630f215ef4d36647def5
MD5 4e7f1ea85e8f14ddd39232a244544f4e
BLAKE2b-256 afe87d1fb17894339246b8d4d9bc95defaf1f49d445605a017044199c4fc1361

See more details on using hashes here.

File details

Details for the file benchopt-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: benchopt-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 149.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for benchopt-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d6695b125da0b75b56586106c794d56b95d182e41c5f3a4e3f3e6d10a951a0f1
MD5 427c4407789220d800e44ad60162880b
BLAKE2b-256 9dfc3b7687dd43c78250bbaae9fe0a117131c889643d20a7916e698fe1e8d42f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page