Skip to main content

Bender Python Client

Project description

Bender Client for Python

:warning: The full DOCUMENTATION on bender-python-client can be found HERE.

Setup

  1. Create an account for free at bender.dreem.com
  2. Install bender in your Python environment with pip install bender-client

Usage Example

Let's use the famous MNIST example where we try to recognize handwritten digits in images.

The code of the algorithm using PyTorch is the following :

To use this example, do not forget to pip install numpy torch torchvision .

from  __future__  import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

class Net(nn.Module):
  def __init__(self, dropout=True, activation="relu", kernel_size=5, conv_depth=10, linear_depth=50):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, conv_depth, kernel_size=kernel_size)
    self.conv2 = nn.Conv2d(conv_depth, 20, kernel_size=kernel_size)
    self.conv2_drop = nn.Dropout2d() if dropout is  True  else  lambda  x: x
    self.fc1 = nn.Linear(320, linear_depth)
    self.fc2 = nn.Linear(linear_depth, 10)
    self.activation =  getattr(F, activation)

  def forward(self, x):
    x = self.activation(F.max_pool2d(self.conv1(x), 2))
    x = self.activation(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
    x = x.view(-1, 320)
    x = self.activation(self.fc1(x))
    x = F.dropout(x, training=self.training)
    x =  self.fc2(x)
    return F.log_softmax(x, dim=1)


def train(model, device, train_loader, optimizer, epoch):
  model.train()
  for batch_idx, (data, target) in  enumerate(train_loader):
    data, target = data.to(device), target.to(device)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % 10 ==  0:
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx *  len(data), len(train_loader.dataset),
        100. * batch_idx /  len(train_loader), loss.item()))

def test(model, device, test_loader):
  model.eval()
  test_loss =  0
  correct =  0
  with torch.no_grad():
    for data, target in test_loader:
      data, target = data.to(device), target.to(device)
      output = model(data)
      test_loss += F.nll_loss(output, target, reduction='sum').item()
      pred = output.max(1, keepdim=True)[1]
      correct += pred.eq(target.view_as(pred)).sum().item()
  test_loss /=  len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct /  len(test_loader.dataset)))
  return (correct / len(test_loader.dataset))

def run(epochs=3, lr=0.01, momentum=0.5, dropout=True, activation="relu", kernel_size=5, conv_depth=10, linear_depth=50):
  torch.manual_seed(1)
  device = torch.device("cpu")
  train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
      transform=transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=32,
    shuffle=True,
  )
  test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=1000,
    shuffle=True,
  )

  model = Net(dropout, activation).to(device)
  optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
  accuracy = 0
  for epoch in  range(1, int(epochs) +  1):
    train(model, device, train_loader, optimizer, epoch)
    accuracy = test(model, device, test_loader)
  return accuracy

if  __name__  ==  '__main__':
  # HYPERPARAMETERS (That's what bender is interested in)
  # Here we select them on our own in an arbitrary way
  hyperparameters = {
    "kernel_size": 5,
    "epochs": 3,
    "lr": 0.05,
    "momentum": 0.2,
    "dropout": True,
    "activation": "relu",
    "conv_depth": 10,
    "linear_depth": 50,
  }
  run(
    epochs=hyperparameters["epochs"],
    lr=hyperparameters["lr"],
    momentum=hyperparameters["momentum"],
    dropout=hyperparameters["dropout"],
    activation=hyperparameters["activation"],
    kernel_size=hyperparameters["kernel_size"],
    conv_depth=hyperparameters["conv_depth"],
    linear_depth=hyperparameters["linear_depth"],
  )

Now let's plug Bender into It !

  1. Importing Bender
from benderclient import Bender
bender = Bender()

This will ask for your email and password. The client will use these to login and retrieve a TOKEN. This TOKEN is personal, it should not be shared, it will be stored in your home folder as ".bender_token", and you will not be asked for your login/password again until it expires. :warning: Again, your TOKEN is personal. You should not give it or add it to any public repository :warning:

  1. Create an Experiment

An experiment is related to the problem you are trying to solve, here : MNIST classification

bender.new_experiment(
	name='MNIST Classification',
	description='Simple image classification on handwritten digits',
	metrics=[
		{
			"metric_name": "algorithm_accuracy", # It's just a name and there can be multiple watched metrics.
			"type": "reward", # The type can either be "reward" or "loss" depending on if you want to maximize or minimize it.
		}
	],
	dataset='MNIST'
)
  1. Create an Algo

An algo is simply corresponding to ONE solution to an Experiment problem : here it's as we saw a Neural Net with PyTorch

bender.new_algo(
	name='PyTorch_NN',
	# The parameters below are actually the Hyper-Parameters of your algo described in a list
	parameters= [
    {
      "name": 'kernel_size',
      "category": "categorical",
      "search_space": {
        "values": [3, 5, 7],
      },
    },
    {
      "name": 'conv_depth',
      "category": "uniform",
      "search_space": {
        "low": 1,
        "high": 100,
        "step": 1,
      },
    },
    {
      "name": 'linear_depth',
      "category": "uniform",
      "search_space": {
        "low": 1,
        "high": 100,
        "step": 1,
      },
    },
    {
      "name": 'epochs',
      "category": "uniform",
      "search_space": {
        "low": 1,
        "high": 4,
        "step": 1,
      },
    },
    {
      "name": 'lr',
      "category": "loguniform",
      "search_space": {
        "low": 1e-5,
        "high": 1e-1,
        "step": 1e-6,
      },
    },
    {
      "name": 'momentum',
      "category": "uniform",
      "search_space": {
        "low": 0,
        "high": 1,
        "step": 0.05,
      },
    },
    {
      "name": 'dropout',
      "category": "categorical",
      "search_space": {
        "values": [True, False],
      },
    },
    {
      "name": 'activation',
      "category": "categorical",
      "search_space": {
        "values": ["relu", "softmax", "sigmoid", "tanh"],
      },
    },
  ]
)
  1. Get an Hyperparameters Set suggestion from Bender

The whole goal of what we did up there is to use Bender to get a new set of Hyperparameters to try according to the settings of your Experiment and Algo.

suggestion = bender.suggest()

# suggestion would for example contain something like :
{
  "kernel_size": 5,
  "epochs": 3,
  "lr": 0.05,
  "momentum": 0.2,
  "dropout": True,
  "activation": "tanh",
  "conv_depth": 10,
  "linear_depth": 50,
}
  1. Feed a Trial to Bender

A Trial is simply an attempt of you trying a Hyperparameters Set with your algorithm associated with the result metrics obtained. If you want bender to improve over time, feed him every trial you make.

bender.new_trial(
	parameters={
    "kernel_size": 5,
		"epochs": 3,
		"lr": 0.05,
		"momentum": 0.2,
		"dropout": True,
		"activation": "tanh",
    "conv_depth": 10,
    "linear_depth": 50,
	},
	results={
		"algorithm_accuracy": 0.7, # We put an arbitrary value here just for the example.
	}
)
  1. The full code put together

Psssssst... The magic starts at line 443... ;)

To use this example, do not forget to pip install numpy torch torchvision bender-client .

from  __future__  import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from benderclient import Bender

class Net(nn.Module):
  def __init__(self, dropout=True, activation="relu", kernel_size=5, conv_depth=10, linear_depth=50):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, conv_depth, kernel_size=kernel_size)
    self.conv2 = nn.Conv2d(conv_depth, 20, kernel_size=kernel_size)
    self.conv2_drop = nn.Dropout2d() if dropout is  True  else  lambda  x: x
    self.fc1 = nn.Linear(320, linear_depth)
    self.fc2 = nn.Linear(linear_depth, 10)
    self.activation =  getattr(F, activation)

  def forward(self, x):
    x = self.activation(F.max_pool2d(self.conv1(x), 2))
    x = self.activation(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
    x = x.view(-1, 320)
    x = self.activation(self.fc1(x))
    x = F.dropout(x, training=self.training)
    x =  self.fc2(x)
    return F.log_softmax(x, dim=1)


def train(model, device, train_loader, optimizer, epoch):
  model.train()
  for batch_idx, (data, target) in  enumerate(train_loader):
    data, target = data.to(device), target.to(device)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % 10 ==  0:
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx *  len(data), len(train_loader.dataset),
        100. * batch_idx /  len(train_loader), loss.item()))

def test(model, device, test_loader):
  model.eval()
  test_loss =  0
  correct =  0
  with torch.no_grad():
    for data, target in test_loader:
      data, target = data.to(device), target.to(device)
      output = model(data)
      test_loss += F.nll_loss(output, target, reduction='sum').item()
      pred = output.max(1, keepdim=True)[1]
      correct += pred.eq(target.view_as(pred)).sum().item()
  test_loss /=  len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct /  len(test_loader.dataset)))
  return (correct / len(test_loader.dataset))

def run(epochs=3, lr=0.01, momentum=0.5, dropout=True, activation="relu", kernel_size=5, conv_depth=10, linear_depth=50):
  torch.manual_seed(1)
  device = torch.device("cpu")
  train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
      transform=transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=32,
    shuffle=True,
  )
  test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=1000,
    shuffle=True,
  )

  model = Net(dropout, activation).to(device)
  optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
  accuracy = 0
  for epoch in  range(1, int(epochs) +  1):
    train(model, device, train_loader, optimizer, epoch)
    accuracy = test(model, device, test_loader)
  return accuracy

def init_bender():
    bender = Bender()
    bender.create_experiment(
        name='MNIST Classification',
        description='Simple image classification on handwritten digits',
        metrics=[{"metric_name": "algorithm_accuracy", "type": "reward"}],
        dataset='MNIST'
    )
    bender.create_algo(
        name='PyTorch_NN',
        hyperparameters= [
            {
                "name": 'kernel_size',
                "category": "categorical",
                "search_space": {
                    "values": [3, 5, 7],
                },
            },
            {
                "name": 'conv_depth',
                "category": "uniform",
                "search_space": {
                    "low": 1,
                    "high": 100,
                    "step": 1,
                },
            },
            {
                "name": 'linear_depth',
                "category": "uniform",
                "search_space": {
                    "low": 1,
                    "high": 100,
                    "step": 1,
                },
            },
            {
                "name": 'epochs',
                "category": "uniform",
                "search_space": {
                    "low": 1,
                    "high": 4,
                    "step": 1,
                },
            },
            {
                "name": 'lr',
                "category": "loguniform",
                "search_space": {
                    "low": 1e-5,
                    "high": 1e-1,
                    "step": 1e-6,
                },
            },
            {
                "name": 'momentum',
                "category": "uniform",
                "search_space": {
                    "low": 0,
                    "high": 1,
                    "step": 0.05,
                },
            },
            {
                "name": 'dropout',
                "category": "categorical",
                "search_space": {
                    "values": [True, False],
                },
            },
            {
                "name": 'activation',
                "category": "categorical",
                "search_space": {
                    "values": ["relu", "softmax", "sigmoid", "tanh"],
                },
            },
        ]
    )
    return bender

if  __name__  ==  '__main__':
  # Create experiment and algo if they don't exist yet. Else, load them from the config file ./.benderconf
  bender = init_bender()
  while True:
    # Get a set of Hyperparameters to test
    suggestion = bender.suggest(metric="algorithm_accuracy")
    # Get algo result with them
    result = run(
      epochs=suggestion["epochs"],
      lr=suggestion["lr"],
      momentum=suggestion["momentum"],
      dropout=suggestion["dropout"],
      activation=suggestion["activation"],
      kernel_size=suggestion["kernel_size"],
      conv_depth=suggestion["conv_depth"],
      linear_depth=suggestion["linear_depth"],
    )
    # Feed Bender a Trial, AKA => suggestion + result
    bender.create_trial(
      hyperparameters=suggestion,
      results={"algorithm_accuracy": result}
    )
    print('New trial sent -----------------------------------------------------\n\n')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bender-client-0.3.2.1.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

bender_client-0.3.2.1-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file bender-client-0.3.2.1.tar.gz.

File metadata

  • Download URL: bender-client-0.3.2.1.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for bender-client-0.3.2.1.tar.gz
Algorithm Hash digest
SHA256 a3801bae793bf2b18e671dbc7f4a62ddaa0f794938cd60c8899ec37609291e80
MD5 b8bc3bee59e17159d28a033c455aa1d1
BLAKE2b-256 cf04c5bbf8ea9a7928099c354e726445fedafcd88140618cbb995526e2b00412

See more details on using hashes here.

File details

Details for the file bender_client-0.3.2.1-py3-none-any.whl.

File metadata

  • Download URL: bender_client-0.3.2.1-py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for bender_client-0.3.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d761c7848cc9e300e088824753cf8303adbd22ff3a050a51a55f5f6faf73d58c
MD5 5e43fc8dac05fe8cd2b7ea8220bd5a07
BLAKE2b-256 5571241952c5c6916366876bb27f453d2e0c23adca325c0a1e9d03efe0a1b779

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page