Skip to main content

BentoML: Build Production-Grade AI Applications

Project description

bentoml

BentoML: The Unified AI Application Framework

pypi_status CI Twitter Community

BentoML is a framework for building reliable, scalable, and cost-efficient AI applications. It comes with everything you need for model serving, application packaging, and production deployment.

👉 Join our Slack community!

Highlights

🍱 Bento is the container for AI apps

  • Open standard and SDK for AI apps, pack your code, inference pipelines, model files, dependencies, and runtime configurations in a Bento.
  • Auto-generate API servers, supporting REST API, gRPC, and long-running inference jobs.
  • Auto-generate Docker container images.

🏄 Freedom to build with any AI models

🍭 Simplify modern AI application architecture

🚀 Deploy Anywhere

  • One-click deployment to ☁️ BentoCloud, the Serverless platform made for hosting and operating AI apps.
  • Scalable BentoML deployment with 🦄️ Yatai on Kubernetes.
  • Deploy auto-generated container images anywhere docker runs.

Documentation

🛠️ What you can build with BentoML

Getting Started

Save or import models in BentoML local model store:

import bentoml
import transformers

pipe = transformers.pipeline("text-classification")

bentoml.transformers.save_model(
  "text-classification-pipe",
  pipe,
  signatures={
    "__call__": {"batchable": True}  # Enable dynamic batching for model
  }
)

View all models saved locally:

$ bentoml models list

Tag                                     Module                Size        Creation Time
text-classification-pipe:kn6mr3aubcuf…  bentoml.transformers  256.35 MiB  2023-05-17 14:36:25

Define how your model runs in a service.py file:

import bentoml

model_runner = bentoml.models.get("text-classification-pipe").to_runner()

svc = bentoml.Service("text-classification-service", runners=[model_runner])

@svc.api(input=bentoml.io.Text(), output=bentoml.io.JSON())
async def classify(text: str) -> str:
    results = await model_runner.async_run([text])
    return results[0]

Now, run the API service locally:

bentoml serve service.py:svc

Sent a prediction request:

$ curl -X POST -H "Content-Type: text/plain" --data "BentoML is awesome" http://localhost:3000/classify

{"label":"POSITIVE","score":0.9129443168640137}%

Define how a Bento can be built for deployment, with bentofile.yaml:

service: 'service.py:svc'
name: text-classification-svc
include:
  - 'service.py'
python:
  packages:
  - torch>=2.0
  - transformers

Build a Bento and generate a docker image:

$ bentoml build
...
Successfully built Bento(tag="text-classification-svc:mc322vaubkuapuqj").
$ bentoml containerize text-classification-svc
Building OCI-compliant image for text-classification-svc:mc322vaubkuapuqj with docker
...
Successfully built Bento container for "text-classification-svc" with tag(s) "text-classification-svc:mc322vaubkuapuqj"
$ docker run -p 3000:3000 text-classification-svc:mc322vaubkuapuqj

For a more detailed user guide, check out the BentoML Tutorial.


Community

BentoML supports billions of model runs per day and is used by thousands of organizations around the globe.

Join our Community Slack 💬, where thousands of AI application developers contribute to the project and help each other.

To report a bug or suggest a feature request, use GitHub Issues.

Contributing

There are many ways to contribute to the project:

  • Report bugs and "Thumbs up" on issues that are relevant to you.
  • Investigate issues and review other developers' pull requests.
  • Contribute code or documentation to the project by submitting a GitHub pull request.
  • Check out the Contributing Guide and Development Guide to learn more
  • Share your feedback and discuss roadmap plans in the #bentoml-contributors channel here.

Thanks to all of our amazing contributors!


Usage Reporting

BentoML collects usage data that helps our team to improve the product. Only BentoML's internal API calls are being reported. We strip out as much potentially sensitive information as possible, and we will never collect user code, model data, model names, or stack traces. Here's the code for usage tracking. You can opt-out of usage tracking by the --do-not-track CLI option:

bentoml [command] --do-not-track

Or by setting environment variable BENTOML_DO_NOT_TRACK=True:

export BENTOML_DO_NOT_TRACK=True

License

Apache License 2.0

FOSSA Status

Citation

If you use BentoML in your research, please cite using the following citation:

@software{Yang_BentoML_The_framework,
author = {Yang, Chaoyu and Sheng, Sean and Pham, Aaron and  Zhao, Shenyang and Lee, Sauyon and Jiang, Bo and Dong, Fog and Guan, Xipeng and Ming, Frost},
license = {Apache-2.0},
title = {{BentoML: The framework for building reliable, scalable and cost-efficient AI application}},
url = {https://github.com/bentoml/bentoml}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bentoml-1.2.0a1.tar.gz (899.1 kB view details)

Uploaded Source

Built Distribution

bentoml-1.2.0a1-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file bentoml-1.2.0a1.tar.gz.

File metadata

  • Download URL: bentoml-1.2.0a1.tar.gz
  • Upload date:
  • Size: 899.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for bentoml-1.2.0a1.tar.gz
Algorithm Hash digest
SHA256 a577b19493f719719522ed26bd069f6d771c2a04efb60532dadf91fe64e8337d
MD5 37db208ca14ea79bf43f0b96cf77733e
BLAKE2b-256 7166d6c163c4355d48a6aad994b8e3ba5d01bc9ef965ae5bfa083a7d18b9a10b

See more details on using hashes here.

File details

Details for the file bentoml-1.2.0a1-py3-none-any.whl.

File metadata

  • Download URL: bentoml-1.2.0a1-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for bentoml-1.2.0a1-py3-none-any.whl
Algorithm Hash digest
SHA256 102436b5b0531874546612a03a8dfa06a0e9cacf53cd2844988b517017ea5399
MD5 acb3b16674c555950359210d1a17118d
BLAKE2b-256 83b7d1cbd81c479c1bcd7e314d6c8026fe4b59148db6e467b50e6445515e5b8e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page