Skip to main content

BERT token level embedding with MxNet

Project description

Bert Embeddings

Build Status codecov PyPI version Documentation Status

BERT, published by Google, is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA.

The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding.

This project is implemented with @MXNet. Special thanks to @gluon-nlp team.

Install

pip install bert-embedding
# If you want to run on GPU machine, please install `mxnet-cu92`.
pip install mxnet-cu92

Usage

from bert_embedding import BertEmbedding

bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.
 Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers.
 As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. 
BERT is conceptually simple and empirically powerful. 
It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%."""
sentences = bert_abstract.split('\n')
bert_embedding = BertEmbedding()
result = bert_embedding(sentences)

If you want to use GPU, please import mxnet and set context

import mxnet as mx
from bert_embedding import BertEmbedding

...

ctx = mx.gpu(0)
bert = BertEmbedding(ctx=ctx)

This result is a list of a tuple containing (tokens, tokens embedding)

For example:

first_sentence = result[0]

first_sentence[0]
# ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers']
len(first_sentence[0])
# 18


len(first_sentence[1])
# 18
first_token_in_first_sentence = first_sentence[1]
first_token_in_first_sentence[1]
# array([ 0.4805648 ,  0.18369392, -0.28554988, ..., -0.01961522,
#        1.0207764 , -0.67167974], dtype=float32)
first_token_in_first_sentence[1].shape
# (768,)

OOV

There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding.

...
bert_embedding = BertEmbedding()
bert_embedding(sentences, 'sum')
...

Available pre-trained BERT models

book_corpus_wiki_en_uncased book_corpus_wiki_en_cased wiki_multilingual wiki_multilingual_cased wiki_cn
bert_12_768_12
bert_24_1024_16 x x x x

Example of using the large pre-trained BERT model from Google

from bert_embedding import BertEmbedding

bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased')

Source: gluonnlp

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bert_embedding-1.0.1.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

bert_embedding-1.0.1-py3-none-any.whl (13.2 kB view details)

Uploaded Python 3

File details

Details for the file bert_embedding-1.0.1.tar.gz.

File metadata

  • Download URL: bert_embedding-1.0.1.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6

File hashes

Hashes for bert_embedding-1.0.1.tar.gz
Algorithm Hash digest
SHA256 41accd9c43953148500c878562441f46e74163c3d773a58b0382159265ac6238
MD5 2b44a514265433c45251ded5849bee0d
BLAKE2b-256 324913f76cef121677994bb1b0e8baa8b8bf88405eb1be554925fe8682b7b71e

See more details on using hashes here.

File details

Details for the file bert_embedding-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: bert_embedding-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 13.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6

File hashes

Hashes for bert_embedding-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 20a2aa08a5d695c4dd221082922cf8c4387c167798d37573a6a969b69d465377
MD5 92d22d63050cca2dc4200b94c71de79b
BLAKE2b-256 6285e0d56e29a055d8b3ba6da6e52afe404f209453057de95b90c01475c3ff75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page