BERT for Multi-task Learning
Project description
Bert for Multi-task Learning
Note: Since 0.4.0, tf version >= 2.1 is required.
Install
pip install bert-multitask-learning
What is it
This a project that uses BERT to do multi-task learning with multiple GPU support.
Why do I need this
In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code.
To sum up, compared to the original bert repo, this repo has the following features:
- Multi-task learning(major reason of re-writing the majority of code).
- Multiple GPU training
- Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder).
What type of problems are supported?
- Masked LM and next sentence prediction Pre-train(pretrain)
- Classification(cls)
- Sequence Labeling(seq_tag)
- Seq2seq Labeling(seq2seq_tag)
- Seq2seq Text Generation(seq2seq_text)
- Multi-Label Classification(multi_cls)
How to run pre-defined problems
There are two types of chaining operations can be used to chain problems.
&. If two problems have the same inputs, they can be chained using&. Problems chained by&will be trained at the same time.|. If two problems don't have the same inputs, they need to be chained using|. Problems chained by|will be sampled to train at every instance.
For example, cws|NER|weibo_ner&weibo_cws, one problem will be sampled at each turn, say weibo_ner&weibo_cws, then weibo_ner and weibo_cws will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch.
Please see the examples in notebooks for more details about training, evaluation and export models.
Bert多任务学习
注意:版本0.4.0后要求tf>=2.1
安装
pip install bert-multitask-learning
这是什么
这是利用BERT进行多任务学习并且支持多GPU训练的项目.
我为什么需要这个项目
在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码.
因此, 和原来的BERT相比, 这个项目具有以下特点:
- 多任务学习
- 多GPU训练
- 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder)
目前支持的任务类型
- Masked LM和next sentence prediction预训练(pretrain)
- 单标签分类(cls)
- 序列标注(seq_tag)
- 序列到序列标签标注(seq2seq_tag)
- 序列到序列文本生成(seq2seq_text)
- 多标签分类(multi_cls)
如何运行预定义任务
目前支持的任务
- 中文命名实体识别
- 中文分词
- 中文词性标注
可以用两种方法来将多个任务连接起来.
&. 如果两个任务有相同的输入, 不同标签的话, 那么他们可以用&来连接. 被&连接起来的任务会被同时训练.|. 如果两个任务为不同的输入, 那么他们必须用|来连接. 被|连接起来的任务会被随机抽取来训练.
例如, 我们定义任务cws|NER|weibo_ner&weibo_cws, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, weibo_ner&weibo_cws被选中. 那么这次weibo_ner和weibo_cws会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0.
训练, eval和导出模型请见notebooks
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file bert_multitask_learning-0.4.2.tar.gz.
File metadata
- Download URL: bert_multitask_learning-0.4.2.tar.gz
- Upload date:
- Size: 51.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4144d61a3e19b1da0a75909de859563b366f7c249c0290fa1992b87b88c0b871
|
|
| MD5 |
47912c1869b538a4b68c057ee48c8b21
|
|
| BLAKE2b-256 |
f400e55002e589a77de507b3df5c039745924ab6fd9b2d41ce98f3fcb9640eff
|
File details
Details for the file bert_multitask_learning-0.4.2-py3-none-any.whl.
File metadata
- Download URL: bert_multitask_learning-0.4.2-py3-none-any.whl
- Upload date:
- Size: 79.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0ad5fc203c9f31f113827338a92305cf4a6d8cae0f35d6b0487a4ceea575426b
|
|
| MD5 |
659a4153072700366c5a92ff81839d2c
|
|
| BLAKE2b-256 |
0c6d8ba49a584e8a59267a8964ebe130a00a7e20c6b3ec3713ae39cc187bb980
|