Skip to main content

Package for loading data from bgen files

Project description

Another bgen parser

bgen

This is a package for reading and writing bgen files.

This package uses cython to wrap c++ code for parsing bgen files. It can parse genotypes from 500,000 individuals at ~800 variants per second within a single python process (~1.2 billion probabilities per second with a 3GHz CPU).

This has been optimized for UKBiobank bgen files (i.e. bgen version 1.2 with zlib compressed 8-bit genotype probabilities, but the other bgen versions and zstd compression have also been tested using example bgen files).

Install

pip install bgen

Usage

from bgen import BgenReader, BgenWriter

bfile = BgenReader(BGEN_PATH)
rsids = bfile.rsids()

# select a variant by indexing
var = bfile[1000]

# pull out genotype probabilities
probs = var.probabilities  # returns 2D numpy array
dosage = var.minor_allele_dosage  # returns 1D numpy array for biallelic variant

# iterate through every variant in the file
with BgenReader(BGEN_PATH, delay_parsing=True) as bfile:
  for var in bfile:
      dosage = var.minor_allele_dosage

# get all variants in a genomic region
variants = bfile.fetch('21', 10000, 5000000)

# or for writing bgen files
import numpy as np
from bgen import BgenWriter

geno = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype(np.float64)
with BgenWriter(BGEN_PATH, n_samples=3) as bfile:
  bfile.add_variant(varid='var1', rsid='rs1', chrom='chr1', pos=1,
                    alleles=['A', 'G'], genotypes=geno)

You can also read bgen files from stdin (to avoid local storage) e.g.

cat $BGEN_PATH | python -c '
import sys
from bgen import BgenReader
with BgenReader(sys.stdin) as bfile:
  for v in bfile:
    print(v)
'
# NOTE: if using a separate sample file, you cannot also read that from stdin,
#       you would need: with BgenReader(sys.stdin, SAMPLE_PATH) as bfile:

API documentation

class BgenReader(path, sample_path='', delay_parsing=False)
    # opens a bgen file. If a bgenix index exists for the file, the index file
    # will be opened automatically for quicker access of specific variants.
    Arguments:
      path: path to bgen file, or sys.stdin (stdin also used when path is '-' or '/dev/stdin')
      sample_path: optional path to sample file. Samples will be given integer IDs
          if sample file is not given and sample IDs not found in the bgen file
      delay_parsing: True/False option to allow for not loading all variants into
          memory when the BgenFile is opened. This can save time when iterating
          across variants in the file
  
  Attributes:
    samples: list of sample IDs
    header: BgenHeader with info about the bgen version and compression.
  
  Methods:
    slicing: BgenVars can be accessed by slicing the BgenFile e.g. bfile[1000]
    iteration: variants in a BgenFile can be looped over e.g. for x in bfile: print(x)
    fetch(chrom, start=None, stop=None): get all variants within a genomic region
    drop_variants(list[int]): drops variants by index from being used in analyses
    with_rsid(rsid): returns list of BgenVars with given rsid
    at_position(pos): returns list of BgenVars at a given position
    varids(): returns list of varids for variants in the bgen file.
    rsids(): returns list of rsids for variants in the bgen file.
    chroms(): returns list of chromosomes for variants in the bgen file.
    positions(): returns list of positions for variants in the bgen file.

class BgenVar(handle, offset, layout, compression, n_samples):
  # Note: this isn't called directly, but instead returned from BgenFile methods
  Attributes:
    varid: ID for variant
    rsid: reference SNP ID for variant
    chrom: chromosome variant is on
    pos: nucleotide position variant is at
    alleles: list of alleles for variant
    is_phased: True/False for whether variant has phased genotype data
    ploidy: list of ploidy for each sample. Samples are ordered as per BgenFile.samples
    minor_allele: the least common allele (for biallelic variants)
    minor_allele_dosage: 1D numpy array of minor allele dosages for each sample
    alt_dosage: 1D numpy array of alt allele dosages for each sample
    probabilities:  2D numpy array of genotype probabilities, one sample per row
      These are most likely for biallelic diploid variants. In that scenario
      unphased probabilities have three columns, for homozygous first allele 
      (AA), heterozygous (Aa), homozygous second allele (aa).
      In contrast, phased probabilities (for a biallelic diploid variant) would
      have four columns, first two for haplotype 1 (hap1-allele1, hap1-allele2), 
      last two for haplotype 2 (hap2-allele1, hap2-allele2).
  
  BgenVars can be pickled e.g. pickle.dumps(var)


class BgenWriter(path, n_samples, samples=[], compression='zstd' layout=2, metadata=None)
    # opens a bgen file to write variants to. Automatically makes a bgenix index file
    Arguments:
      path: path to write data to
      n_samples: number of samples that you have data for
      samples: list of sample IDs (same length as n_samples)
      compression: compression type: None, 'zstd', or 'zlib' (default='zstd')
      layout: bgen layout format (default=2)
      metadata: any additional metadata you want o include in the file (as str)
    
    Methods:
      add_variant_direct(variant)
        Arguments:
            variant: BgenVar, to be directly copied from one begn file to 
                another. This can be done when the new bgen file is for the same
                set of samples as the one being read from. This is much faster
                due to not having to decode and re-encode the genotype data.
      add_variant(varid, rsid, chrom, pos, alleles, genotypes, ploidy=2, 
                  phased=False, bit_depth=8)
        Arguments:
            varid: variant ID e.g. 'var1'
            rsid: reference SNP ID e.g. 'rs1'
            chrom: chromosome the variant is on e.g 'chr1'
            pos: nucleotide position of the variant e.g. 100
            alleles: list of allele strings e.g. ['A', 'C']
            genotypes: numpy array of genotype probabilities, ordered as per the
                bgen samples e.g. np.array([[0, 0, 1], [0.5, 0.5, 0]])
            ploidy: ploidy state, either as integer to indicate constant ploidy
                (e.g. 2), or numpy array of ploidy values per sample, e.g. np.array([1, 2, 2])
            phased: whether the genotypes are for phased data or not (default=False)
            bit_depth: how many bits to store each genotype as (1-32, default=8)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bgen-1.8.1.tar.gz (913.9 kB view details)

Uploaded Source

Built Distributions

bgen-1.8.1-cp313-cp313-win_amd64.whl (504.1 kB view details)

Uploaded CPython 3.13Windows x86-64

bgen-1.8.1-cp313-cp313-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

bgen-1.8.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

bgen-1.8.1-cp313-cp313-macosx_11_0_arm64.whl (934.8 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

bgen-1.8.1-cp312-cp312-win_amd64.whl (504.1 kB view details)

Uploaded CPython 3.12Windows x86-64

bgen-1.8.1-cp312-cp312-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

bgen-1.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

bgen-1.8.1-cp312-cp312-macosx_11_0_arm64.whl (935.9 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

bgen-1.8.1-cp311-cp311-win_amd64.whl (503.7 kB view details)

Uploaded CPython 3.11Windows x86-64

bgen-1.8.1-cp311-cp311-musllinux_1_2_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

bgen-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

bgen-1.8.1-cp311-cp311-macosx_11_0_arm64.whl (934.3 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

bgen-1.8.1-cp310-cp310-win_amd64.whl (503.9 kB view details)

Uploaded CPython 3.10Windows x86-64

bgen-1.8.1-cp310-cp310-musllinux_1_2_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

bgen-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

bgen-1.8.1-cp310-cp310-macosx_11_0_arm64.whl (933.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

bgen-1.8.1-cp39-cp39-win_amd64.whl (504.8 kB view details)

Uploaded CPython 3.9Windows x86-64

bgen-1.8.1-cp39-cp39-musllinux_1_2_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

bgen-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

bgen-1.8.1-cp39-cp39-macosx_11_0_arm64.whl (934.6 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

bgen-1.8.1-cp38-cp38-win_amd64.whl (505.4 kB view details)

Uploaded CPython 3.8Windows x86-64

bgen-1.8.1-cp38-cp38-musllinux_1_2_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

bgen-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

bgen-1.8.1-cp38-cp38-macosx_11_0_arm64.whl (862.4 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

File details

Details for the file bgen-1.8.1.tar.gz.

File metadata

  • Download URL: bgen-1.8.1.tar.gz
  • Upload date:
  • Size: 913.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1.tar.gz
Algorithm Hash digest
SHA256 20acbf82c3c4c3fa045804d7af8792aa7c8354d3d1d2975b377637c99a83f54d
MD5 35c3a6d29652f0d96d40173a8b9b3d87
BLAKE2b-256 fc68198f192ffa912792d8f36cc162f8cef0cd8a82ad2766d224407cc3d754d1

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 504.1 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b364f9308366f62fb23cebb8bf04c085a667724157e4f1f597ba6681ba27f544
MD5 07e34434f04483d5073fb5ed1d8d5858
BLAKE2b-256 71e6b8f8449cfe35fc2892700078d9b7464251dd2438fe08e4a67190ccf55ecb

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 60665af6e75a08964b69bf0eb98cfb0846bb7ee895cb188b3c238b4d2863363c
MD5 0a04f2139369705e055c56389696dd2a
BLAKE2b-256 abda2e385ac058288a74fa309ec6148991e3b6241c30f6f926ee4cbc50235db9

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89dc196562ea003607d4de357530dbe01fab7d2d3726d6557fabe74ab74f842e
MD5 0272b9d5fd64a74b5c68af11b7b9ae7d
BLAKE2b-256 ece3daa0dc6ba3424d829f00722f7cfc8f4cd41dfe7d0728408e8ae335562bb0

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c91f7a977a4c6fee3d837232394039a471c82f3f07209b714843f9582ca716f3
MD5 62d361385fd9ed69b532c239aaa93f84
BLAKE2b-256 32213704b6a74649056d7412e4984baec14d3836b6bd07b00b2e025caf4609cc

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 504.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ba8431a637cf852c5ab64714ae7fb527a0b6969b97c3e2d05b438a31474788f2
MD5 2b7f8f27be920b7c9a8d71078476f61a
BLAKE2b-256 b7b25299fc864399d37a4aa6e2b5222a8cf64ade2481eeb3adfc12974ba583f1

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e21d2b9cfca1bc7594e5cc221a0938de7c09d32ce8805ea8e4b24c197ac13140
MD5 da055a167d93f049fc645847b2c1cdd3
BLAKE2b-256 1d5bfa5a34268b312a9f0b1ad483603cc36e8e1fbd9212e38638af5264983078

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea7574994e032c6d4b8df889e949884bea0f0ceaf6fa6c19e40c1d48c0b587f1
MD5 b7cbe3adbb6c2ed92318a8ae3e026ce0
BLAKE2b-256 488f5ad73dda727f94eb6c073a48833c86f65e83fcea78ab306f67a0a425233f

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 86b08022255ee3bde270cadf4d546575587cfb73c4375dcf98723f9660b09948
MD5 ca3c315dbe79c107844f32322683693d
BLAKE2b-256 9967bb56155a827c9e11da519e69b93a6f7492dfd394a05c23284dc45937a70d

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 503.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b89c732e42b4ead563e67ecffbf22fc7d2badd9225e493678c5f433418eadab6
MD5 fc7a46dbcb9bca2a3d5ad3fc114a38c9
BLAKE2b-256 ae89aff69a309ab1974c5bafa06eaf1ac38a21f9bd589579afcd68a5d0d0ab36

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 be1e0d35d765913f71c19f759ebc914d2cf28c4c4b24ed2ce8bf63d040635726
MD5 ea3d2c79287c5db0bd797423bc1a5c68
BLAKE2b-256 b111eea19ee4e44850556cf112434f01ddd251f8f95a3503946d6216e4322259

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd011dd080731957e23feecc250374af48eaac865ebf031256818dacbf32ab94
MD5 f87f767c0cd9bc2c20b0f32d8986f4b6
BLAKE2b-256 f8ac8d13dcaf0bd643402008afc6fb7901b6ddd7a9cf9b9a37edd1db1ed80f2d

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acefbe259beaf904abafb13e70dbc20e8972192ce832b6f04c1be10d2f14646b
MD5 3975b894a6907fd894e62641a2ec9009
BLAKE2b-256 7c3fee9c3fa16177b5f039a3713944bd814c520ed1a823dabc49dc8ae925fc74

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 503.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bc67db189da6d2c31af91cb2a7bf7cdf8c065211a21697e4b68fd61169223ac6
MD5 9e02a7690ad41bf817b1a46edfc985dc
BLAKE2b-256 ff33fa2594f7ed28e0a0c9be5f3b3ec485bbbc72b4dc56a14efae8c2be77440c

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7c9cd1e87db55ca09c409be46bf38b52a144bc7f176636c0d1caab1c7021b911
MD5 e3a8cf71dc655cd8f7401a1fca247f76
BLAKE2b-256 b52eeedd1dcd20dea735cd1653c7ba87f95fb0bc2fd0f9764c2c8257df2dfae5

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30b498c42569d9eee9179273ffb4cf5c2468724d5d5a19e019d73da759387513
MD5 28db3ef7de7a1285529c4e6fceea7de4
BLAKE2b-256 cfcc1614cdc9fe9261e8747b9d1699f4f4e5a8d813c9cacf9cfaeb6db2c9a095

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f8b546605cd2a83927e3cabfc26ba663057f248e92fd4a108712890033f86208
MD5 9fda865b02a34a5b67e7ff606f943c3c
BLAKE2b-256 5ab30d6e0799bb9e6b0cb3296df564bdf9a2cd1f401f85e37f8fecdbaa1f712a

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 504.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 96ebe842d1865941a0bc751058bd665d760fea2eab699cf91da41b61547e40a2
MD5 2fce442c8dcdfaf9084d4d42efee47ce
BLAKE2b-256 c79010c42668f2702b94b2017d769229cad2c664d5f68d910a49735d9f57be14

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp39-cp39-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c9465d16e60afdd9d054e77107d2ec09588cbd0e4c6825c7318b695f72e578f7
MD5 7d37b74dff06a1c5d2d9f0a54242711e
BLAKE2b-256 6e7a13361e5f53f632f0d8fa2cf61a75fbb3636a60a0a69addfd777351f59f2d

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d46ace28dea27c088a761c2ca5b406449ab0201cf74dcaa07daa378b6ce50dbc
MD5 2acf2c216eec872a06405da43053e7b7
BLAKE2b-256 603bfb974a1c1974d5a9682c2b82162d12b9f406da71a795ad31727316350500

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 934.6 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 82af4a6e31ea671f9eee858e526d80b328a1e5673e55b88a2aaedb73f029bbbe
MD5 eb6ae4e7fe9797decdb625d62db58ca8
BLAKE2b-256 514ffa063949c25011e36edcbbccdc87eef22318513897ba9a20ad1b821b724e

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 505.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2bc69bd1840aecd14f4c0f876bb7fe8b6afee196aea83a34a84988e0e4d6a0cb
MD5 7a11f8491982c5cfcb829b867427cd1f
BLAKE2b-256 e540e59fb59645587952e707d08df0f6eaf4ff94a3acd30855e22bd04464ef6e

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp38-cp38-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.8, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6db9d6ec7a4c0627586832a2f2bafd912aacec677effbd6750b5957a1a9815f3
MD5 38776553c3293b462d1dc1bfc0738ee7
BLAKE2b-256 30bb3b94b98d15a615bd3c8fc27ee528e1781a740fc4f51ae9668ab650a27e48

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12090f417a68d35156fb4b6ac5591fa1230a17a30837a73385c5ac6be74043ac
MD5 e7bf84385a90fc0e0fc7a9f30d56089e
BLAKE2b-256 017a3d9e47878a0b25133b2b74f9fd5c24e27b9e94523cf4be68ad4f03348d49

See more details on using hashes here.

File details

Details for the file bgen-1.8.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: bgen-1.8.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 862.4 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.8.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 516a5b8009101648226fcd857af674434ee89e8636e1e72cd7c25c3f6e6988f9
MD5 a027492f7809d7edcb0da296ff8a1992
BLAKE2b-256 26331329333f06ebc0f7313e6a02909817859fe055ca1b3eb5a231befe03fddd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page