Skip to main content

Package for loading data from bgen files

Project description

Another bgen parser

bgen

This is a package for reading and writing bgen files.

This package uses cython to wrap c++ code for parsing bgen files. It can parse genotypes from 500,000 individuals at ~800 variants per second within a single python process (~1.2 billion probabilities per second with a 3GHz CPU).

This has been optimized for UKBiobank bgen files (i.e. bgen version 1.2 with zlib compressed 8-bit genotype probabilities, but the other bgen versions and zstd compression have also been tested using example bgen files).

Install

pip install bgen

Usage

from bgen import BgenReader, BgenWriter

bfile = BgenReader(BGEN_PATH)
rsids = bfile.rsids()

# select a variant by indexing
var = bfile[1000]

# pull out genotype probabilities
probs = var.probabilities  # returns 2D numpy array
dosage = var.minor_allele_dosage  # returns 1D numpy array for biallelic variant

# iterate through every variant in the file
with BgenReader(BGEN_PATH, delay_parsing=True) as bfile:
  for var in bfile:
      dosage = var.minor_allele_dosage

# get all variants in a genomic region
variants = bfile.fetch('21', 10000, 5000000)

# or for writing bgen files
import numpy as np
from bgen import BgenWriter

geno = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype(np.float64)
with BgenWriter(BGEN_PATH, n_samples=3) as bfile:
  bfile.add_variant(varid='var1', rsid='rs1', chrom='chr1', pos=1,
                    alleles=['A', 'G'], genotypes=geno)

You can also read bgen files from stdin (to avoid local storage) e.g.

cat $BGEN_PATH | python -c '
import sys
from bgen import BgenReader
with BgenReader(sys.stdin) as bfile:
  for v in bfile:
    print(v)
'
# NOTE: if using a separate sample file, you cannot also read that from stdin,
#       you would need: with BgenReader(sys.stdin, SAMPLE_PATH) as bfile:

API documentation

class BgenReader(path, sample_path='', delay_parsing=False)
    # opens a bgen file. If a bgenix index exists for the file, the index file
    # will be opened automatically for quicker access of specific variants.
    Arguments:
      path: path to bgen file, or sys.stdin (stdin also used when path is '-' or '/dev/stdin')
      sample_path: optional path to sample file. Samples will be given integer IDs
          if sample file is not given and sample IDs not found in the bgen file
      delay_parsing: True/False option to allow for not loading all variants into
          memory when the BgenFile is opened. This can save time when iterating
          across variants in the file
  
  Attributes:
    samples: list of sample IDs
    header: BgenHeader with info about the bgen version and compression.
  
  Methods:
    slicing: BgenVars can be accessed by slicing the BgenFile e.g. bfile[1000]
    iteration: variants in a BgenFile can be looped over e.g. for x in bfile: print(x)
    fetch(chrom, start=None, stop=None): get all variants within a genomic region
    drop_variants(list[int]): drops variants by index from being used in analyses
    with_rsid(rsid): returns list of BgenVars with given rsid
    at_position(pos): returns list of BgenVars at a given position
    varids(): returns list of varids for variants in the bgen file.
    rsids(): returns list of rsids for variants in the bgen file.
    chroms(): returns list of chromosomes for variants in the bgen file.
    positions(): returns list of positions for variants in the bgen file.

class BgenVar(handle, offset, layout, compression, n_samples):
  # Note: this isn't called directly, but instead returned from BgenFile methods
  Attributes:
    varid: ID for variant
    rsid: reference SNP ID for variant
    chrom: chromosome variant is on
    pos: nucleotide position variant is at
    alleles: list of alleles for variant
    is_phased: True/False for whether variant has phased genotype data
    ploidy: list of ploidy for each sample. Samples are ordered as per BgenFile.samples
    minor_allele: the least common allele (for biallelic variants)
    minor_allele_dosage: 1D numpy array of minor allele dosages for each sample
    alt_dosage: 1D numpy array of alt allele dosages for each sample
    probabilities:  2D numpy array of genotype probabilities, one sample per row
      These are most likely for biallelic diploid variants. In that scenario
      unphased probabilities have three columns, for homozygous first allele 
      (AA), heterozygous (Aa), homozygous second allele (aa).
      In contrast, phased probabilities (for a biallelic diploid variant) would
      have four columns, first two for haplotype 1 (hap1-allele1, hap1-allele2), 
      last two for haplotype 2 (hap2-allele1, hap2-allele2).
  
  BgenVars can be pickled e.g. pickle.dumps(var)


class BgenWriter(path, n_samples, samples=[], compression='zstd' layout=2, metadata=None)
    # opens a bgen file to write variants to. Automatically makes a bgenix index file
    Arguments:
      path: path to write data to
      n_samples: number of samples that you have data for
      samples: list of sample IDs (same length as n_samples)
      compression: compression type: None, 'zstd', or 'zlib' (default='zstd')
      layout: bgen layout format (default=2)
      metadata: any additional metadata you want o include in the file (as str)
    
    Methods:
      add_variant_direct(variant)
        Arguments:
            variant: BgenVar, to be directly copied from one begn file to 
                another. This can be done when the new bgen file is for the same
                set of samples as the one being read from. This is much faster
                due to not having to decode and re-encode the genotype data.
      add_variant(varid, rsid, chrom, pos, alleles, genotypes, ploidy=2, 
                  phased=False, bit_depth=8)
        Arguments:
            varid: variant ID e.g. 'var1'
            rsid: reference SNP ID e.g. 'rs1'
            chrom: chromosome the variant is on e.g 'chr1'
            pos: nucleotide position of the variant e.g. 100
            alleles: list of allele strings e.g. ['A', 'C']
            genotypes: numpy array of genotype probabilities, ordered as per the
                bgen samples e.g. np.array([[0, 0, 1], [0.5, 0.5, 0]])
            ploidy: ploidy state, either as integer to indicate constant ploidy
                (e.g. 2), or numpy array of ploidy values per sample, e.g. np.array([1, 2, 2])
            phased: whether the genotypes are for phased data or not (default=False)
            bit_depth: how many bits to store each genotype as (1-32, default=8)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bgen-1.9.0.tar.gz (916.4 kB view details)

Uploaded Source

Built Distributions

bgen-1.9.0-cp313-cp313-win_amd64.whl (514.3 kB view details)

Uploaded CPython 3.13Windows x86-64

bgen-1.9.0-cp313-cp313-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

bgen-1.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

bgen-1.9.0-cp313-cp313-macosx_11_0_arm64.whl (937.9 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

bgen-1.9.0-cp312-cp312-win_amd64.whl (514.6 kB view details)

Uploaded CPython 3.12Windows x86-64

bgen-1.9.0-cp312-cp312-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

bgen-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

bgen-1.9.0-cp312-cp312-macosx_11_0_arm64.whl (938.7 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

bgen-1.9.0-cp311-cp311-win_amd64.whl (513.2 kB view details)

Uploaded CPython 3.11Windows x86-64

bgen-1.9.0-cp311-cp311-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

bgen-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

bgen-1.9.0-cp311-cp311-macosx_11_0_arm64.whl (937.6 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

bgen-1.9.0-cp310-cp310-win_amd64.whl (513.7 kB view details)

Uploaded CPython 3.10Windows x86-64

bgen-1.9.0-cp310-cp310-musllinux_1_2_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

bgen-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

bgen-1.9.0-cp310-cp310-macosx_11_0_arm64.whl (936.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

bgen-1.9.0-cp39-cp39-win_amd64.whl (514.8 kB view details)

Uploaded CPython 3.9Windows x86-64

bgen-1.9.0-cp39-cp39-musllinux_1_2_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

bgen-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

bgen-1.9.0-cp39-cp39-macosx_11_0_arm64.whl (937.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

bgen-1.9.0-cp38-cp38-win_amd64.whl (515.3 kB view details)

Uploaded CPython 3.8Windows x86-64

bgen-1.9.0-cp38-cp38-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

bgen-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

bgen-1.9.0-cp38-cp38-macosx_11_0_arm64.whl (865.2 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

File details

Details for the file bgen-1.9.0.tar.gz.

File metadata

  • Download URL: bgen-1.9.0.tar.gz
  • Upload date:
  • Size: 916.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0.tar.gz
Algorithm Hash digest
SHA256 49554a76b3cf98d9e4cdae31a81d2c8373475ae5b916a2a4a763a5bdfb7731f3
MD5 8e60e4c0f3b5aec1781544552bc0e4df
BLAKE2b-256 ac0215118e58ae9a65660ec168ec83b77bad2949e99b7b425b734cf5920226be

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 514.3 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 9e474c6b93a3bdc91e77c55d079322bfa53f62b87e3a319417734aac93be4cab
MD5 6af16ab2d9f47750a8fa2aa8a3853069
BLAKE2b-256 97d1d5c8524cc3283dd46fa815f88df769c66c14416ff24abff4a8c531b87ab4

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9f02408779d92325efbd7efe18829a947d318fc04d05b98e9db5a63fd603ff0a
MD5 b82ac69d5c7f5e157ede9756f79781f9
BLAKE2b-256 b9ac0674a2fd0104224853886290570d655e109113760c0b2c8daa719a5d4684

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52969b61d5e914d89a2c8dc20c3c090c8cb9525bb0cc58071c7e18dcb1641357
MD5 eab6d1a909ae980db6230786953255be
BLAKE2b-256 ca635b8b448ce9843b994ad8a3730ffdea2df8f09bf0be0fce910fbb80d04c7c

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb182a8c06603a0777982f44df53673a465a9d29ad092dcb3e5801d3629b072c
MD5 a68aa0466f2afadf1d9097c835065968
BLAKE2b-256 357408a361df52a28b852d346f0a155226878fa9970aef1f40e588b2bd3730d9

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 514.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 92fd341bc33e64b85fecd6a7ad1b8b55b76fc7d9277101934711f85230cd4ffa
MD5 f09728f5b3e465d7fe0b1b43c992917a
BLAKE2b-256 24857e87aea962b5c0738189dc58d5c0f478a55a75a7e120e17b992e307ef0b9

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8c3aaa1c0bf762dedbd8cd08f35b2851eab67a5759e0265c2ae85dac7e0c3621
MD5 8ede3434bf6c8a052467703685cbedc0
BLAKE2b-256 32d5c5f6cc653c17be9325bd81cba19bff34db890c779e0969a768e428a58686

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d716b8c6503a334d9a0e97b7edc24209e1a63dd3f628b11f0eeea8d5fe8753d7
MD5 777b792663713b25a0da7d84235f4820
BLAKE2b-256 cc6500621985ce3c0a37a97d889af234dbad144f318880bc95f508f0d5415724

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b4049ff0983837521d0214da20ba19f7908b261412726f1402feca5b57e2143
MD5 cf3784d55491692586962267cf7d7222
BLAKE2b-256 e00624225019151499e9d4580b08910fac1e5b50f562c893453aa1233dfc9656

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 513.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 18a805d3fa0189bef4729c296609f254640a97527128bc88b6a3d807a4a829f1
MD5 ae7be9aa7ce58a11c03bddf08d43f0f2
BLAKE2b-256 3a5ca4cbf196461b39eef9c388ead4e93bf90d3ff73135e349abf55edd2f0d3b

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5b049bed578e98833b6308acc7387ccf68a3616660f07e231a8de1a0eb3b430c
MD5 243f43a474e70b4f8f24a39f47a70e5f
BLAKE2b-256 da2754b864351d2a57f0bbeb802c7990318380ff4fcb83b927ca89b4ff5bbec5

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97d0378e3a44aacd5d20ed93592e6babc2b6bf036552fad49b98a003c566c929
MD5 60941a8fb022259cd2a691ca7567b9c9
BLAKE2b-256 be8de7b10307aa8a41e51cfe37819ed1a5805a1abec0d61b43f45891dff79051

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc5f14412fd4f0adf5efe9e0a6f8142e9e31ab49ce8bc95e7bc589499bfb852d
MD5 8f830396f1000eb9b60862d4fb0ee538
BLAKE2b-256 ea41f7400c1efe5dc713bbfa13f7a7b8ca1ed18621c5e58b29b65946050c71c2

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 513.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 681993fe33b6fd07a862db3eb864543452fb589cdf4b75541ee3c176d197c5a5
MD5 bd05a7835b2410a927953145026833a8
BLAKE2b-256 95d2a72de9087895a31f360fda8f3063deb202c067078326b53c298d5374c371

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8a8ecc16c1fcf293478736c5b26bdda5061acbb6819809ab9ed51cd97f2e05d1
MD5 523ffa002114fdfcf644d5f7b5107d37
BLAKE2b-256 798152d0817582d61ac927036d97b240d6aca7910417c50590b9008ab8a9243d

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0646a4e2c905ffc8fc0173edfa20bd7baa9fc4e8ace56bb7758b14f247972e03
MD5 752ec1df4142271280d5d73b99426a4a
BLAKE2b-256 9b4878a33197359ef04b73e3a988ef9eb0eb7c505f2d0dcff9ea1dcc7e6616b5

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34ff763cbbd525d4065ecd625a686fb27ff1cdef2ca961c880fc2fe0878e5a6d
MD5 4cebdd1be80184d6d588a96382743f80
BLAKE2b-256 0337388a37c21f25948c6b6463d5358086eec8097b8eae1f5fb162b6a2ec65c3

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 514.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2c8fcd27199549fd6543d7c836f5a7dec4470680470bbc87b0fc1a9e0ed9e8ad
MD5 abadd6661e45284968aee684bf566813
BLAKE2b-256 2e9fe313af8d1dc2b6d061db5ea84a2a12163291f3a001d13ce0e158d18d68e1

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp39-cp39-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 76af857147d936c8e5c02ae77e74c9dbbac7767c512484edd38abb341fcaad97
MD5 3042ead0de0b1869f10921951eb90cae
BLAKE2b-256 0fed898c82d293a87443f63470c5eed5c2a94cb5e572502effcf43531c116b29

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5903cd533d061b43a0b10e616bd760fd8c5bbccb2cae27276695d0f95296beca
MD5 c186bede23bbcb98cdb44fd4d42e07fa
BLAKE2b-256 0c2fb7a4508f8aaa4b9e754464aed4e3f04eff00673d3a6234bcd7b8a657e8b5

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 937.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f2116aa3f971bc7aab96de2d966ff96060d6a1d7316f613cc79c27b87fb43d3f
MD5 bad99d6298b748a1fe361a650ea21851
BLAKE2b-256 a7c256ce9d35e4972c857c14234fa9fbc93ee6db2c64be5e7473c81f895e0603

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 515.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6097906b220b0cf455f5f3ab047abfb6ce4da2f2025241b0e199000a7669f0cf
MD5 5fa1cd6eab2dbad37058af6c88f1674d
BLAKE2b-256 8a6f45259d46f03fdb91ca8508e5e102d0466d5a876351d64bade2c97b525562

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp38-cp38-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.8, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2541182ed0173342ae5670dbcb73aecd05f8278a03a639723b6762456692601f
MD5 752cce40eda7536c998df20ca1dc16b1
BLAKE2b-256 ae8c87823408e6d17c51c57770edeb128057e4cb28945e6211a2bf40169d2dbd

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bgen-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12998dcd912b4e26d510bbea2eae3d820163106f4ea2c47b3e9e9864f878eb94
MD5 4091a44fb9f7a4a3307a265cf7acbe96
BLAKE2b-256 c10b24ae44275ef31c24ad459be1e225f5ed89e7510ea0525f1e18087aac776e

See more details on using hashes here.

File details

Details for the file bgen-1.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: bgen-1.9.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 865.2 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bgen-1.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d23924e7faf449b961ac31f09a4ddc8edabd64d3e455d54db0217a4977e17d7c
MD5 b562044efa9c224975f336e011d58c19
BLAKE2b-256 173866742a0e33904eac73c16c21b45ba5126142c5b5e1051a387b46b1bac115

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page