Skip to main content

Mixture modeling for working-memory experiments

Project description

Biased Memory Toolbox

A Python toolbox for mixture modeling of data from visual-working-memory experiments

Cherie Zhou (@cherieai) and Sebastiaan Mathôt (@smathot)
Copyright 2020 - 2021

Citation

Zhou, C., Lorist, M., Mathôt, S., (2021). Categorical bias in visual working memory: The effect of memory load and retention interval. Cortex. https://osf.io/puq4v/

This manuscript is a Stage 1 in-principle acceptance of a registered report

Usage

See example.py and example.html for an example use case.

Installation

pip install biased_memory_toolbox

License

biased_memory_toolbox is licensed under the GNU General Public License v3.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

biased_memory_toolbox-1.1.1.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

biased_memory_toolbox-1.1.1-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file biased_memory_toolbox-1.1.1.tar.gz.

File metadata

  • Download URL: biased_memory_toolbox-1.1.1.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for biased_memory_toolbox-1.1.1.tar.gz
Algorithm Hash digest
SHA256 8f165523ba15cebd370008f0c56ffc6d22f65196580206e451d8b4bc8b6644ab
MD5 9443719706d2b7b9caed0a2508319175
BLAKE2b-256 af48d723ec6d1da2598ba0b52b4ece1ef5b0d91fa9a41f31a8e710f22e76ecc4

See more details on using hashes here.

File details

Details for the file biased_memory_toolbox-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: biased_memory_toolbox-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 16.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for biased_memory_toolbox-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 04a7ec96482220b6ee595b62bd0ffc2d027b18dd7ca3f02e7cd00d412f1c0001
MD5 c9452976783a8fc3c380beff79963ba7
BLAKE2b-256 2d8f5a639005c1b13faccc0ea623443794d054c98b17ba1715f5854e6f47211d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page