Skip to main content

Track asymptotic complexity in time and space.

Project description

bigO

bigO automatically measures empirical computational complexity (in both time and space) of functions. To use bigO, you just need to add a @bigO.track decorator to your function together with a "length" function (the "n"). You can then run your function as usual, ideally along a wide range of inputs, and bigO will report the computational complexity of that function.

bigO accumulates its results in a file named bigO_data.json in the local directory; you can then generate a graph of time and space complexity for each tracked function by running python3 -m bigO.graph.

Demonstration

Inferring Time and Space Bounds

The file test/facts.py is a small program that demonstrates bigO.

import bigO

def fact(x: int) -> int:
  v = 1
  for i in range(x):
    v *= i
  return v

@bigO.track(lambda xs: len(xs))
def factorialize(xs: list[int]) -> list[int]:
  new_list = [fact(x) for x in xs]
  return new_list

# Exercise the function - more inputs are better!
for i in range(30):
    factorialize([i for i in range(i * 100)])

Now run the program as usual:

python3 test/facts.py

Now you can easily generate a graph of all tracked functions. Just run the following command in the same directory.

python3 -m bigO

This command creates the file bigO.pdf that contains graphs like this:

infer

Verifying Time and Space Bounds

bigO will also verify declared bounds of functions. The file test/facts_bounds.py declares factorialize as follows:

@bigO.bounds(lambda xs: len(xs),
             time="O(n*log(n))",
             mem="O(n)")
def factorialize(xs: list[int]) -> list[int]:
    ...

Running

python3 -m bigO

now creates this plot, showing that the timing data matches a worse bound than the declared bound and that the memory data matches the declared bound:

bounds

The analysis currently supports these performance models: O(1), O(log(log(n))), O(log(n)), O(log(n)**2), O(log(n)**3), O(sqrt(n)), O(n), O(n*log(n)), O(n**2), O(n**3), O(n**k), and O(2**n). It is trivial to add additional forms.

Lightweight A/B Performance Experiments

bigO also lets you run light-weight A/B performance tests. The file tests/test_ab_sort.py demonstrates this. It includes two sorting functions:

import random
import numpy as np
from bigO.bigO import ab_test

def insertion_sort(arr: np.ndarray) -> np.ndarray:
    ...

@ab_test(lambda x: len(x), alt=insertion_sort)
def quick_sort(arr: np.ndarray) -> np.ndarray:
    ...

for i in range(200):
    quick_sort(np.random.rand(random.randint(1, 100)))

The quick_sort function is annotated to indicate the bigO should compare the time and memory of that function to insertion_sort. At run time, bigO will randomly select which of the two functions to run on each call to quick_sort.

After running the program,

python3 -m bigO

compares the running times across the input size range, identifying segments where one function performs statistically significantly better than the other, as in the following, which shows smoothed performance curves, shaded regions where one function is better than the other, as well as the p-values for each segment's statistical test.

abtest

Verifying Hard Limits on Time, Space, and Input Size

bigO also lets you verify at run time that function calls do not exceed hard limits on time, memory, or input size. The file test/test_limits_insertion_sort.py demonstrates this:

@limits(len, 
        time=0.1, 
        mem=1_000_000, 
        length=1800)
def insertion_sort(arr: np.ndarray) -> np.ndarray:
    ...

After running that program

python3 -m bigO

produces the following plots, showing the histograms of those metrics, as well as the specified limits.

limits

You can also specify only one or two of the limits instead of all three. This is perhaps less broadly applicable than bounds checking but may be useful in some contexts.

Technical Details

Curve-fitting

bigO's curve-fitting based approach is directly inspired by "Measuring Empirical Computational Complexity" by Goldsmith et al., FSE 2007, using log-log plots to fit a power-law distribution.

Unlike that work, bigO also measures space complexity by tracking memory allocations during function execution.

In addition, bigO uses a more general curve fitting approach that can handle complexity classes that do not follow the power law, and it uses the AIC to select the best model. Further, bigO measures the statistical significance of its complexity inference results via p-values computed by the technique outlined in An Empirical Investigation of Statistical Significance in NLP by Berg-Kirkpatrick, Burkett, and Klein, 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 995–1005.

For A/B testing, bigO smooths the performance curves for the two functions, segments the input range by approximating crossover points for those curves, and then performs a standard permutation test to determine whether the different in performance between the function across that range is statistically significant. The test statistic is the area between the two curves, as approximated by numerical integration via the trapezoid rule.

A version of bigO matching the log-log approach of the paper above can be run as follows:

python3 -m bigO.graph

This command creates the file bigO.pdf that contains graphs like this:

bigO

Caveats

  • bigO assumes all length functions are constant. The instrumentation of nested tracked calls may add overhead that effects the checking of hard limits, but nested tracked calls will not impact asymptotic bounds.

  • During A/B testing, no nesting tracked functions from within the two variants. Doing so may impact the timing comparisions

  • Python's threading model is not amenable to precisely measuring concurrent calls. bigO is not designed to handle threads.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

bigo-0.0.5-cp312-cp312-win_amd64.whl (44.8 kB view details)

Uploaded CPython 3.12Windows x86-64

bigo-0.0.5-cp312-cp312-win32.whl (44.4 kB view details)

Uploaded CPython 3.12Windows x86

bigo-0.0.5-cp312-cp312-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

bigo-0.0.5-cp312-cp312-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

bigo-0.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (104.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

bigo-0.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (102.9 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

bigo-0.0.5-cp312-cp312-macosx_11_0_arm64.whl (41.3 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

bigo-0.0.5-cp312-cp312-macosx_10_13_x86_64.whl (41.2 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

bigo-0.0.5-cp311-cp311-win_amd64.whl (44.8 kB view details)

Uploaded CPython 3.11Windows x86-64

bigo-0.0.5-cp311-cp311-win32.whl (44.4 kB view details)

Uploaded CPython 3.11Windows x86

bigo-0.0.5-cp311-cp311-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

bigo-0.0.5-cp311-cp311-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

bigo-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (104.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

bigo-0.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (103.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

bigo-0.0.5-cp311-cp311-macosx_11_0_arm64.whl (41.4 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

bigo-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl (41.3 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

bigo-0.0.5-cp310-cp310-win_amd64.whl (44.8 kB view details)

Uploaded CPython 3.10Windows x86-64

bigo-0.0.5-cp310-cp310-win32.whl (44.4 kB view details)

Uploaded CPython 3.10Windows x86

bigo-0.0.5-cp310-cp310-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

bigo-0.0.5-cp310-cp310-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

bigo-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (104.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

bigo-0.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (103.0 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

bigo-0.0.5-cp310-cp310-macosx_11_0_arm64.whl (41.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

bigo-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl (41.3 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

bigo-0.0.5-cp39-cp39-win_amd64.whl (44.8 kB view details)

Uploaded CPython 3.9Windows x86-64

bigo-0.0.5-cp39-cp39-win32.whl (44.4 kB view details)

Uploaded CPython 3.9Windows x86

bigo-0.0.5-cp39-cp39-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

bigo-0.0.5-cp39-cp39-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ i686

bigo-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (104.2 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

bigo-0.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (102.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

bigo-0.0.5-cp39-cp39-macosx_11_0_arm64.whl (41.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

bigo-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl (41.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file bigo-0.0.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: bigo-0.0.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 44.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 100773a41c3522a3be5b14f0d427c2bbd846e9f15a5259346e3237042c47b0ba
MD5 8bf445bf89ac2fa3f242106fe1dc4a72
BLAKE2b-256 3198062e9b37b1bdbcfd2dfd18f602c9787cf46d878f49c3b513269d77a6f8d2

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp312-cp312-win32.whl.

File metadata

  • Download URL: bigo-0.0.5-cp312-cp312-win32.whl
  • Upload date:
  • Size: 44.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d8b215a56d119c7b4e0e5972167afb4ff19a8d01d8006b02e7f8a9f5e1d731fb
MD5 013d8b3e400aba17fe269454707ac381
BLAKE2b-256 a93bb4608a584a1de9033ffb23d14a8fbd76cfa57863d84462caa906f4276d51

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1c16d0f28df99601b2967d7b3ec09bd0d75e61a254b2fff142d60afea2ac09bd
MD5 cffd08c83c31cdb9bb68ebdae93ea55c
BLAKE2b-256 31b2c82125c7ecd2f5f462de049a83b5438c4cb2e8668e369fb12922d5386bc3

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

  • Download URL: bigo-0.0.5-cp312-cp312-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.12, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3341d2be952a8c47c1933cf6c6d6dfdd8e3830d7d63f879cfa7b82425816c9fa
MD5 33004dd32831064b635ccb9180c5c18e
BLAKE2b-256 06d4e3736825579591ca51e8a2c3c5b15184868c4c7a897624e5c6e6cfebe359

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f36596a779ecbff574c61609caf4458cf5c5977223a9589305e274f8c3e5b47
MD5 fd891a8136af692bb873958d017c7e36
BLAKE2b-256 e266b743a186cee1d1ccf4e6be99f413d529720fabb1b76d07ca861184d7d3d7

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8ca479a4c5b932e6833ec4aeb53a14681165ab76681a18c3d635be797c8379ac
MD5 edc896270671dc97e61be30636252eee
BLAKE2b-256 9ae036fc73b5bc2d5ebdf2a482c2198b00da87cadbfc230890a75499423232ce

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1fe96f89fee8c49489141d257175c23a75d4dfc54832c8152b0a857aacb0cd58
MD5 48e02ce82dce67619059c086c6923ab1
BLAKE2b-256 994c7ce9ffcff4380b99771ce5cca3193c22b164cefd5d469ed100cdd56a300a

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6c7b270d56148167aa00a95b4c7f1ad3767d40c38bceef23719b688ebcc3ccec
MD5 cae97256235504b7eb9b53719044fb38
BLAKE2b-256 223a2b341f95284ad7ba0bfff0f3c8947047833ae98ff3f3504ba8f3a4a5bf4d

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: bigo-0.0.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 44.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 00172678c724e0ef2e8273b8d67646314a79d5861cb179d48b974652f1e9ca45
MD5 04b5d378262dc13e32977ce361a9bcb7
BLAKE2b-256 7d9376067cadb1580b3ee879595f71a784c141ef66a4d3965263e654921062ba

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: bigo-0.0.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 44.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cc88f35380068f5601b3ef6a6ab63d269e2f5e122fc6748cdcca376f278b5d33
MD5 a65fc6b5e4565b658bc95680982ee63d
BLAKE2b-256 1bc06fede7db37fc720e4aecb9024a0e53e1cae3e6144d00a3a979abf147c3e7

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5460161d31dc6a4a1ed7194682435ae18cca86648f88969862b2bbb36fb3c40c
MD5 5a4fd7fa92edfb6844dfaf024f2c64e6
BLAKE2b-256 f2b9e9bb5f6f51f27ceb299affb3a879cbff8dae25b219ba6e5571a09c0afca2

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

  • Download URL: bigo-0.0.5-cp311-cp311-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.11, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 866c22b5151176b0eaec6135b054ecbfc22644b8aa2874372f5f0e63eaeff592
MD5 21b798850462195f20bf1c7f8577ed13
BLAKE2b-256 0a918912c12b0312b24f55091c4ff331a0c3b01d39e71eeb8ade3daf2d7e38ae

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bca0b1679801cac6d71286e5b83cc7d465cb983798a6a07365584b0789f8f38b
MD5 9e25c5c3f3e14904700eeffc0ed077c5
BLAKE2b-256 ec14f97b8c22689a51e5c7d366b22f83109c2236fa996372c2f8a3f1392a430b

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba854e923c22f5335f386ac6c3775f58520e40825668fb7cedff098191ee61a4
MD5 1d11ae3c967882e8101b10d743342218
BLAKE2b-256 e7ad2c5641616eef2ff1ba1b59f79040723fcb03d0609246c868a1a794506327

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e96a00becb51e19a09fc6fdce8b15d97a63f782076ff7a77579b0966dbf2bf21
MD5 d27026dcb95c1007d8d4180e0db776e8
BLAKE2b-256 a8b56784ee6e603993fb150f5942502a3dcba3b909f534afe48db1460856657e

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a290254d63ebc1dd7d37f12d3bb1797f1241765d32ed8e29e4f972bc858232d
MD5 eed0846f93d82e4d730df12f2dc8fab6
BLAKE2b-256 049f69360dcf207533dc0da79aa297bc3ffa45168c287f53a9a14924021ddd16

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: bigo-0.0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 44.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8be8786c5f67de98f6d8ba321f80dda4fd701b5e02c8cc755bef6ecf2b6b8c63
MD5 76f1da0aa89e632a3e547967ebde5201
BLAKE2b-256 fef09249bf2d21d8668ab2806b31d58aee2d786463608931c4f41872cdf8ebad

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: bigo-0.0.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 44.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 86862ef952a3a41253abd23c83c247c96408d4df343bf8e7af587ba939970cd0
MD5 b651a98957fb38d72ea11661dcd1f4c5
BLAKE2b-256 09105fb93ca0313ba8b56bcd03f5aea9badc47280477bd5d4410de9deb8c49d4

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 36f52c8429f85321738023ec74e1c9e219cbe588268a93faeec435e873f24629
MD5 d8d49bcb5267c168b870b624bdeef335
BLAKE2b-256 0333b36c551968894dd8f14e2174b955446863700adf157fc26f378d783c0e03

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

  • Download URL: bigo-0.0.5-cp310-cp310-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 91b56715effa25df97b41a1da3d17f91ee8f116db7469c461c1747b9f250de4c
MD5 286ad3188a8e4c6f08f4adca42368f9c
BLAKE2b-256 2e59069686e213c4cbdb292808920eda8c211aee48242df461a39e22bb830de5

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0ab7474b626fd74cf19fea48bd42dd65ca91fc8d03a0f3a54fb0d940e7451a9
MD5 678ed6a8e267f5a297ecbc5ea8544bde
BLAKE2b-256 65898643ddcb73afecba1b06b0ed699644e18a332b339117c378dfc798e2aeb0

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ef314518ba73a5c2ec037599d0278031f45f8a8cf5e9582a360b3355b294f6dd
MD5 3f26d1ebfe207c4e9f05201690368284
BLAKE2b-256 31a865fa1970b31cc02729b8c3073b08aa70059c8b575e871685a66c60e32c39

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e4f9ce5440268fb6a0f71f023c1bb39512cc7bd35f4302fce97f5694484ab018
MD5 c71d78c14bace7cd13eb2d81394721a8
BLAKE2b-256 363945f5d16891e494f94615d688047915b14ecc2d1142630ffcc3caa8d1229a

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1afcdbc2dbe768839a4e3d1cfb4ebec973c26c12b1dd837dc4c12c7e23e85d1d
MD5 4c1a918ba8af91b15708abc75847433d
BLAKE2b-256 b447f0ac0e44ed0ece5adb019d30bca95139ccb01bfb49789837272613ad9bd1

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: bigo-0.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d6e65c49003d0f70c887ab6288ee6f08a1e1602e51983f659356740f31e9a508
MD5 0494c61d1dbe3477f998c609af949317
BLAKE2b-256 6c593f97aad4af61363b07d9f627a930ccf38a5973ab4f8726dadae09c75c168

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: bigo-0.0.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 44.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ebfe4cc1f3d6858b73e360860bb3cd0a48ad006aa6d0558ec46dc4e787fc8a2b
MD5 3cfac8ff5188c248313959515c1a6149
BLAKE2b-256 37af4c411e2b4ff08dc59144dcf1ecc0716c717b314b9e38bc6a7a7b768918dd

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

  • Download URL: bigo-0.0.5-cp39-cp39-musllinux_1_2_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1e87e73004efb4ccc9c00e25fae6471e86ee77ed13f30c9706e0af6bd6bb07a4
MD5 2a83dd1deffb5c15d8e012a08e6cd71d
BLAKE2b-256 373b1d5f219d3966bcdd991d293bdc0d57018f30a38044487f6433946e09ca63

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

  • Download URL: bigo-0.0.5-cp39-cp39-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8e4921085dd43b34f743a5ed48390482c3018c01cb81f65c5147762f604ee61e
MD5 3e9451fb4f0670325135c6be30f7a6e5
BLAKE2b-256 f9a55fb19550be77813ecf2843052fcecd93d436b200c362800acfbf165f65f5

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd63113acf0844aaa367604c9fae998ad591b0ca66c8f8885883e56405422f90
MD5 f9a5a5d833af39ff7b3698b5e622f4ba
BLAKE2b-256 626537a499edd2a3cd67c46395b8cb58328e54d413dacad8fb06136897c4f6f4

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bigo-0.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 54bd8e08a812a0885ef21dc23e1c0f6aac6a5f6b27f94ab09bbe8afd690de9e7
MD5 da4607359763142722ed08d0413ca6b6
BLAKE2b-256 3f8341a3249754271d1b8d8abbc2cbe9b2dfe8d7c95584964957994f252f7021

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: bigo-0.0.5-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 41.3 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 478f36886d75ff7e2b29d3036000270947bc3d2f9601e59b4218b028cf490300
MD5 d91a0b3e69d0f055c2fcac135dd2c9ac
BLAKE2b-256 b1b1310c436babe2b75ae54d4f3b99823f74d364b8b7de51cb62877068d2f750

See more details on using hashes here.

File details

Details for the file bigo-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: bigo-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 41.3 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for bigo-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f652d44a7ce2fccf037a7610eedb3831018455b524f0039fee29b5f036d92714
MD5 2ace20160f13344b3b5c779b6b9d99b2
BLAKE2b-256 cae46a75a45bf34d964c31845b9c439584ca179336b77ae6f970e3ff0cb93ba5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page