Skip to main content

A package containing helpers to make audio playlists.

Project description

Python bindings for bliss-rs.

Audio library used as a building block to make playlists from songs.

Installation

bliss-audio is available for Python 3.5+ via pip:

$ pip install bliss-audio

Usage

from bliss_audio import Song
import numpy as np

song1 = Song("/path/to/song1")

print(f'Song "{song1.title}" has the following analysis:')
for key, value in sorted(song1.analysis_dict.items()):
    print(f"{key}: {value}")

song2 = Song("/path/to/song2")

distance = np.linalg.norm(np.array(song1.analysis) - np.array(song2.analysis))

print(f'\nDistance between song1 and song2 is {distance}')

Then you most likely want to analyze a bunch of songs like that, store the result somewhere, and generate playlists on the fly by taking a song and finding the next one by computing the one with the smallest distance to it.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

bliss_audio-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

bliss_audio-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

bliss_audio-0.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

bliss_audio-0.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

File details

Details for the file bliss_audio-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bliss_audio-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01f7027d87e873bf6cfd69e844f9737285138be91315ddb22878441055184c64
MD5 48bf42c60cbe96c3ec25439e7c3ff484
BLAKE2b-256 15d9b15d7a0a4082f90dd209922ff2f808a1bf2545de753735c315e73508ce37

See more details on using hashes here.

File details

Details for the file bliss_audio-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bliss_audio-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2889246481a84234104740a809589a543efc16df6f7dcfd37eacfcbaa1ca4ba
MD5 863b3f7426764a42b0d0607a25802585
BLAKE2b-256 0d81f6efcbc43ebbde207fcc0435626218ef77fc139267fc00f8ab1730d3c4ab

See more details on using hashes here.

File details

Details for the file bliss_audio-0.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bliss_audio-0.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b382a94ee56351191bd738597c090a74d2dec3640dfe191e2bdc89a71a772b97
MD5 4a949acab9fdc2d471b3ae728cbf4f50
BLAKE2b-256 c16225745a82cc3f8c0e5437dcf222863e1ade504f656877f28a9fb28ff43eac

See more details on using hashes here.

File details

Details for the file bliss_audio-0.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bliss_audio-0.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5a20e081e89679d533ec8ab25d10dcd043846ffa08fbf3c7149ca1f7ac44cee
MD5 5a5fdfae54566eafe26704bcec947bd1
BLAKE2b-256 ab273ba194b8622bdcec5fe9152961cb1ed2acd74eaa8b3ce7f184d4561c72ec

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page