Skip to main content

A lightweight and fast automl framework

Project description

BlueCast

codecov Codecov workflow pre-commit Code style: black Checked with mypy pydocstyle Documentation Status PyPI version Optuna python python PRs Welcome

A lightweight and fast auto-ml library. This is the successor of the e2eml automl library. While e2eml tried to cover many model architectures and a lot of different preprocessing options, BlueCast focuses on a few model architectures (on default Xgboost only) and a few preprocessing options (only what is needed for Xgboost). This allows for a much faster development cycle and a much more stable codebase while also having as few dependencies as possible for the library. Despite being lightweight in its core BlueCast offers high customization options for advanced users. Find the full documentation here.

Installation

Installation for end users

From PyPI:

pip install bluecast

Using a fresh environment with Python 3.9 or higher is recommended. We consciously do not support Python 3.8 or lower to prevent the usage of outdated Python versions and issues connected to it.

Installation for developers

  • Clone the repository:
  • Create a new conda environment with Python 3.9 or higher
  • run pip install poetry to install poetry as dependency manager
  • run poetry install to install all dependencies

General usage

Basic usage

The module blueprints contains the main functionality of the library. The main entry point is the Blueprint class. It already includes needed preprocessing (including some convenience functionality like feature type detection) and model hyperparameter tuning.

from bluecast.blueprints.cast import BlueCast

automl = BlueCast(
        class_problem="binary",
        target_column="target"
    )

automl.fit(df_train, target_col="target")
y_probs, y_classes = automl.predict(df_val)

Advanced usage

Explanatory analysis

BlueCast offers a simple way to get a first overview of the data:

from bluecast.eda.analyse import (
    bi_variate_plots,
    correlation_heatmap,
    correlation_to_target,
    univariate_plots,
)

from bluecast.preprocessing.feature_types import FeatureTypeDetector

# Here we automatically detect the numeric columns
feat_type_detector = FeatureTypeDetector()
train_data = feat_type_detector.fit_transform_feature_types(train_data)

# show univariate plots
univariate_plots(
        train_data.loc[
            :, feat_type_detector.num_columns  # here the target column EC1 is already included
        ],
        "EC1",
    )

# show bi-variate plots
bi_variate_plots(train_data.loc[
            :, feat_type_detector.num_columns
        ],
        "EC1")

# show correlation heatmap
correlation_heatmap(train_data.loc[
            :, feat_type_detector.num_columns])

# show correlation to target
correlation_to_target(train_data.loc[
            :, feat_type_detector.num_columns
        ],
        "EC1",)

# show feature space after principal component analysis
plot_pca(train_data.loc[
            :, feat_type_detector.num_columns
        ], "target")

# show feature space after t-SNE
plot_tsne(train_data.loc[
            :, feat_type_detector.num_columns
        ], "target", perplexity=30, random_state=0)

Enable cross-validation

While the default behaviour of BlueCast is to use a simple train-test-split, cross-validation can be enabled easily:

from bluecast.blueprints.cast import BlueCast
from bluecast.config.training_config import TrainingConfig, XgboostTuneParamsConfig


# Create a custom training config and adjust general training parameters
train_config = TrainingConfig()
train_config.hypertuning_cv_folds = 5 # default is 1

# Pass the custom configs to the BlueCast class
automl = BlueCast(
        class_problem="binary",
        target_column="target"
        conf_training=train_config,
    )

automl.fit(df_train, target_col="target")
y_probs, y_classes = automl.predict(df_val)

Use multi-model blended pipeline

By default, BlueCast trains a single model. However, it is possible to train multiple models with one call for extra robustness. BlueCastCV has a fit and a fit_eval method. The fit_eval method trains the models, but also provides out-of-fold validation. Also BlueCastCV allows to pass custom configurations.

from bluecast.blueprints.cast import BlueCastCV
from bluecast.config.training_config import TrainingConfig, XgboostTuneParamsConfig

# Pass the custom configs to the BlueCast class
automl = BlueCastCV(
        class_problem="binary",
        #conf_training=train_config,
        #conf_xgboost=xgboost_param_config,
        #custom_preprocessor=custom_preprocessor, # this takes place right after test_train_split
        #custom_last_mile_computation=custom_last_mile_computation, # last step before model training/prediction
        #custom_feature_selector=custom_feature_selector,
    )

# this class has a train method:
# automl.fit(df_train, target_col="target")

automl.fit_eval(df_train, target_col="target")
y_probs, y_classes = automl.predict(df_val)

Categorical encoding

By default, BlueCast uses target encoding. This behaviour can be changed in the TrainingConfig by setting cat_encoding_via_ml_algorithm to True. This will change the expectations of custom_last_mile_computation though. If cat_encoding_via_ml_algorithm is set to False, custom_last_mile_computation will receive numerical features only as target encoding will apply before. If cat_encoding_via_ml_algorithm is True (default setting) custom_last_mile_computation will receive categorical features as well, because Xgboost's inbuilt categorical encoding will be used.

Custom training configuration

Despite e2eml, BlueCast allows easy customization. Users can adjust the configuration and just pass it to the BlueCast class. Here is an example:

from bluecast.blueprints.cast import BlueCast
from bluecast.config.training_config import TrainingConfig, XgboostTuneParamsConfig

# Create a custom tuning config and adjust hyperparameter search space
xgboost_param_config = XgboostTuneParamsConfig()
xgboost_param_config.steps_max = 100
xgboost_param_config.num_leaves_max = 16
# Create a custom training config and adjust general training parameters
train_config = TrainingConfig()
train_config.hyperparameter_tuning_rounds = 10
train_config.autotune_model = False # we want to run just normal training, no hyperparameter tuning
# We could even just overwrite the final Xgboost params using the XgboostFinalParamConfig class

# Pass the custom configs to the BlueCast class
automl = BlueCast(
        class_problem="binary",
        target_column="target"
        conf_training=train_config,
        conf_xgboost=xgboost_param_config,

    )

automl.fit(df_train, target_col="target")
y_probs, y_classes = automl.predict(df_val)

Custom preprocessing

The BlueCast class also allows for custom preprocessing. This is done by an abstract class that can be inherited and passed into the BlueCast class. BlueCast provides two entry points to inject custom preprocessing. The attribute custom_preprocessor is called right after the train_test_split. The attribute custom_last_mile_computation will be called before the model training or prediction starts (when only numerical features are present anymore) and allows users to execute last computations (i.e. sub sampling or final calculations).

from bluecast.blueprints.cast import BlueCast
from bluecast.preprocessing.custom import CustomPreprocessing

# Create a custom tuning config and adjust hyperparameter search space
xgboost_param_config = XgboostTuneParamsConfig()
xgboost_param_config.steps_max = 100
xgboost_param_config.num_leaves_max = 16
# Create a custom training config and adjust general training parameters
train_config = TrainingConfig()
train_config.hyperparameter_tuning_rounds = 10
train_config.autotune_model = False # we want to run just normal training, no hyperparameter tuning
# We could even just overwrite the final Xgboost params using the XgboostFinalParamConfig class

class MyCustomPreprocessing(CustomPreprocessing):
    def __init__(self):
        self.trained_patterns = {}

    def fit_transform(
        self, df: pd.DataFrame, target: pd.Series
    ) -> Tuple[pd.DataFrame, pd.Series]:
        num_columns = df.drop(['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ'], axis=1).columns
        cat_df = df[['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ']].copy()

        zscores = Zscores()
        zscores.fit_all(df, ['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ'])
        df = zscores.transform_all(df, ['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ'])
        self.trained_patterns["zscores"] = zscores

        imp_mean = SimpleImputer(missing_values=np.nan, strategy='median')
        num_columns = df.drop(['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ'], axis=1).columns
        imp_mean.fit(df.loc[:, num_columns])
        df = imp_mean.transform(df.loc[:, num_columns])
        self.trained_patterns["imputation"] = imp_mean

        df = pd.DataFrame(df, columns=num_columns).merge(cat_df, left_index=True, right_index=True, how="left")

        df = df.drop(['Beta', 'Gamma', 'Delta', 'Alpha'], axis=1)

        return df, target

    def transform(
        self,
        df: pd.DataFrame,
        target: Optional[pd.Series] = None,
        predicton_mode: bool = False,
    ) -> Tuple[pd.DataFrame, Optional[pd.Series]]:
        num_columns = df.drop(['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ'], axis=1).columns
        cat_df = df[['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ']].copy()

        df = self.trained_patterns["zscores"].transform_all(df, ['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ'])

        imp_mean = self.trained_patterns["imputation"]
        num_columns = df.drop(['Beta', 'Gamma', 'Delta', 'Alpha', 'EJ'], axis=1).columns
        df.loc[:, num_columns] = df.loc[:, num_columns].replace([np.inf, -np.inf], np.nan)
        df = imp_mean.transform(df.loc[:, num_columns])

        df = pd.DataFrame(df, columns=num_columns).merge(cat_df, left_index=True, right_index=True, how="left")

        df = df.drop(['Beta', 'Gamma', 'Delta', 'Alpha'], axis=1)

        return df, target

# add custom last mile computation
class MyCustomLastMilePreprocessing(CustomPreprocessing):
    def custom_function(self, df: pd.DataFrame) -> pd.DataFrame:
        df = df / 2
        df["custom_col"] = 5
        return df

    # Please note: The base class enforces that the fit_transform method is implemented
    def fit_transform(
        self, df: pd.DataFrame, target: pd.Series
    ) -> Tuple[pd.DataFrame, pd.Series]:
        df = self.custom_function(df)
        df = df.head(1000)
        target = target.head(1000)
        return df, target

    # Please note: The base class enforces that the fit_transform method is implemented
    def transform(
        self,
        df: pd.DataFrame,
        target: Optional[pd.Series] = None,
        predicton_mode: bool = False,
    ) -> Tuple[pd.DataFrame, Optional[pd.Series]]:
        df = self.custom_function(df)
        if not predicton_mode and isinstance(target, pd.Series):
            df = df.head(100)
            target = target.head(100)
        return df, targe

custom_last_mile_computation = MyCustomLastMilePreprocessing()
custom_preprocessor = MyCustomPreprocessing()

# Pass the custom configs to the BlueCast class
automl = BlueCast(
        class_problem="binary",
        target_column="target"
        conf_training=train_config,
        conf_xgboost=xgboost_param_config,
        custom_preprocessor=custom_preprocessor, # this takes place right after test_train_split
        custom_last_mile_computation=custom_last_mile_computation, # last step before model training/prediction
    )

automl.fit(df_train, target_col="target")
y_probs, y_classes = automl.predict(df_val)

Custom feature selection

BlueCast offers automated feature selection. On default the feature selection is disabled, but BlueCast raises a warning to inform the user about this option. The behaviour can be controlled via the TrainingConfig.

from bluecast.blueprints.cast import BlueCast
from bluecast.preprocessing.custom import CustomPreprocessing
from bluecast.config.training_config import TrainingConfig

# Create a custom training config and adjust general training parameters
train_config = TrainingConfig()
train_config.hyperparameter_tuning_rounds = 10
train_config.autotune_model = False # we want to run just normal training, no hyperparameter tuning
train_config.enable_feature_selection = True

# Pass the custom configs to the BlueCast class
automl = BlueCast(
        class_problem="binary",
        target_column="target"
        conf_training=train_config,
    )

automl.fit(df_train, target_col="target")
y_probs, y_classes = automl.predict(df_val)

Also this step can be customized. The following example shows how to:

from bluecast.config.training_config import FeatureSelectionConfig
from bluecast.config.training_config import TrainingConfig
from bluecast.preprocessing.custom import CustomPreprocessing
from sklearn.feature_selection import RFECV
from sklearn.metrics import make_scorer, matthews_corrcoef
from sklearn.model_selection import StratifiedKFold
from typing import Optional, Tuple


# Create a custom training config and adjust general training parameters
train_config = TrainingConfig()
train_config.enable_feature_selection = True

# add custom feature selection
class RFECVSelector(CustomPreprocessing):
    def __init__(self, random_state: int = 0):
        super().__init__()
        self.selected_features = None
        self.random_state = random_state
        self.selection_strategy: RFECV = RFECV(
            estimator=xgb.XGBClassifier(),
            step=1,
            cv=StratifiedKFold(5, random_state=random_state, shuffle=True),
            min_features_to_select=1,
            scoring=make_scorer(matthews_corrcoef),
            n_jobs=2,
        )

    def fit_transform(self, df: pd.DataFrame, target: pd.Series) -> Tuple[pd.DataFrame, Optional[pd.Series]]:
        self.selection_strategy.fit(df, target)
        self.selected_features = self.selection_strategy.support_
        df = df.loc[:, self.selected_features]
        return df, target

    def transform(self,
                  df: pd.DataFrame,
                  target: Optional[pd.Series] = None,
                  predicton_mode: bool = False) -> Tuple[pd.DataFrame, Optional[pd.Series]]:
        df = df.loc[:, self.selected_features]
        return df, target

custom_feature_selector = RFECVSelector()

# Create an instance of the BlueCast class with the custom model
bluecast = BlueCast(
    class_problem="binary",
    target_column="target",
    conf_feature_selection=custom_feat_sel,
    conf_training=train_config,
    custom_feature_selector=custom_feature_selector,

# Create some sample data for testing
x_train = pd.DataFrame(
    {"feature1": [i for i in range(10)], "feature2": [i for i in range(10)]}
)
y_train = pd.Series([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
x_test = pd.DataFrame(
    {"feature1": [i for i in range(10)], "feature2": [i for i in range(10)]}

x_train["target"] = y_trai
# Fit the BlueCast model using the custom model
bluecast.fit(x_train, "target"
# Predict on the test data using the custom model
predicted_probas, predicted_classes = bluecast.predict(x_test)

Custom ML model

For some users it might just be convenient to use the BlueCast class to enjoy convenience features (details see below), but use a custom ML model. This is possible by passing a custom model to the BlueCast class. The needed properties are defined via the BaseClassMlModel class. Here is an example:

from bluecast.ml_modelling.base_classes import (
    BaseClassMlModel,
    PredictedClasses,  # just for linting checks
    PredictedProbas,  # just for linting checks
)


class CustomModel(BaseClassMlModel):
    def __init__(self):
        self.model = None

    def fit(
        self,
        x_train: pd.DataFrame,
        x_test: pd.DataFrame,
        y_train: pd.Series,
        y_test: pd.Series,
    ) -> None:
        self.model = LogisticRegression()
        self.model.fit(x_train, y_train)

    def predict(self, df: pd.DataFrame) -> Tuple[PredictedProbas, PredictedClasses]:
        predicted_probas = self.model.predict_proba(df)
        predicted_classes = self.model.predict(df)
        return predicted_probas, predicted_classes

custom_model = CustomModel()

# Create an instance of the BlueCast class with the custom model
bluecast = BlueCast(
    class_problem="binary",
    target_column="target",
    ml_model=custom_model,

# Create some sample data for testing
x_train = pd.DataFrame(
    {"feature1": [i for i in range(10)], "feature2": [i for i in range(10)]}
)
y_train = pd.Series([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
x_test = pd.DataFrame(
    {"feature1": [i for i in range(10)], "feature2": [i for i in range(10)]}

x_train["target"] = y_trai
# Fit the BlueCast model using the custom model
bluecast.fit(x_train, "target"
# Predict on the test data using the custom model
predicted_probas, predicted_classes = bluecast.predict(x_test)

Please note that custom ML models require user defined hyperparameter tuning. Pre-defined configurations are not available for custom models.

Convenience features

Despite being a lightweight library, BlueCast also includes some convenience with the following features:

  • automatic feature type detection and casting
  • automatic DataFrame schema detection: checks if unseen data has new or missing columns
  • categorical feature encoding (target encoding or directly in Xgboost)
  • datetime feature encoding
  • automated GPU availability check and usage for Xgboost a fit_eval method to fit a model and evaluate it on a validation set to mimic production environment reality
  • functions to save and load a trained pipeline
  • shapley values
  • warnings for potential misconfigurations

The fit_eval method can be used like this:

from bluecast.blueprints.cast import BlueCast

automl = BlueCast(
        class_problem="binary",
        target_column="target"
    )

automl.fit_eval(df_train, df_eval, y_eval, target_col="target")
y_probs, y_classes = automl.predict(df_val)

It is important to note that df_train contains the target column while df_eval does not. The target column is passed separately as y_eval.

Code quality

To ensure code quality, we use the following tools:

  • various pre-commit libraries
  • strong type hinting in the code base
  • unit tests using Pytest

For contributors, it is expected that all pre-commit and unit tests pass. For new features it is expected that unit tests are added.

Documentation

Documentation is provided via Read the Docs

How to contribute

Contributions are welcome. Please follow the following steps:

  • Create a new branch from develop branch
  • Add your feature or fix
  • Add unit tests for new features
  • Run pre-commit checks and unit tests (using Pytest)
  • Adjust the docs/source/index.md file
  • Copy paste the content of the docs/source/index.md file into the README.md file
  • Push your changes and create a pull request

If library or dev dependencies have to be changed, adjust the pyproject.toml. For readthedocs it is also requited to update the docs/srtd_requirements.txt file. Simply run:

poetry export --with dev -f requirements.txt --output docs/rtd_requirements.txt

If readthedocs will be able to create the documentation can be tested via:

poetry run sphinx-autobuild docs/source docs/build/html

This will show a localhost link containing the documentation.

Meta

Creator: Thomas Meißner – LinkedIn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bluecast-0.10.tar.gz (92.4 kB view hashes)

Uploaded Source

Built Distribution

bluecast-0.10-py3-none-any.whl (46.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page