bnlearn is a Python package for Causal Discovery by learning the graphical structure of Bayesian networks, parameter learning, inference and sampling methods.
Project description
bnlearn
is Python package for causal discovery by learning the graphical structure of Bayesian networks, parameter learning, inference, and sampling methods.
Because probabilistic graphical models can be difficult to use, Bnlearn
contains the most-wanted pipelines. Navigate to API documentations for more detailed information. ⭐️ Star it if you like it ⭐️
Key Pipelines
Feature | Description |
---|---|
Causal Discovery / Structure Learning | Learn the model structure from data or with expert knowledge. |
Parameter Learning | Estimate model parameters (e.g., conditional probability distributions) from observed data. |
Causal Inference | Compute interventional and counterfactual distributions using do-calculus. |
Generate Synthetic Data | Generate synthetic data. |
Discretize Data | Discretize continuous datasets. |
Resources and Links
- Example Notebooks: Examples
- Blog Posts: Medium
- Documentation: Website
- Bug Reports and Feature Requests: GitHub Issues
The following functions are available after installation:
Feature | Description |
---|---|
Key Pipelines | |
Structure learning | bn.structure_learning.fit() |
Parameter learning | bn.parameter_learning.fit() |
Inference | bn.inference.fit() |
Make predictions | bn.predict() |
Generate Synthetic Data | bn.sampling() |
Compute Edge Strength | bn.independence_test() |
Key Functions | |
Imputations | bn.knn_imputer() |
Discretizing | bn.discretize() |
Check Model Parameters | bn.check_model() |
Create DAG | bn.make_DAG() |
Get Node Properties | bn.get_node_properties() |
Get Edge Properties | bn.get_edge_properties() |
Get Parents From Edges | bn.get_parents() |
Generate Default CPT per Node | bn.generate_cpt() |
Generate Default CPTs for All Edges | bn.build_cpts_from_structure() |
Make Plots | |
Plotting | bn.plot() |
Plot Graphviz | bn.plot_graphviz() |
Compare 2 Networks | bn.compare_networks() |
Load DAG (bif files) | bn.import_DAG() |
Load Examples | bn.import_example() |
Transformation Functions | |
Convert DAG to Undirected | bn.to_undirected() |
Convert to one-hot | bn.df2onehot() |
Convert Adjacency Matrix to Vector | bn.adjmat2vec() |
Convert Adjacency Matrix to Dictionary | bn.adjmat2dict() |
Convert Vector to Adjacency Matrix | bn.vec2adjmat() |
Convert DAG to Adjacency Matrix | bn.dag2adjmat() |
Convert DataFrame to Onehot | bn.df2onehot() |
Convert Query to DataFrame | bn.query2df() |
Convert Vector to DataFrame | bn.vec2df() |
Metrics | |
Compute Topological Ordering | bn.topological_sort() |
Compute Structure Scores | bn.structure_scores() |
General | |
Save Model | bn.save() |
Load Model | bn.load() |
Print CPTs | bn.print_CPD() |
Installation
Install bnlearn from PyPI
pip install bnlearn
Install bnlearn from github source
pip install git+https://github.com/erdogant/bnlearn
Load library
# Import library
import bnlearn as bn
Code Examples
import bnlearn as bn
# Example dataframe sprinkler_data.csv can be loaded with:
df = bn.import_example()
# df = pd.read_csv('sprinkler_data.csv')
Cloudy Sprinkler Rain Wet_Grass
0 0 1 0 1
1 1 1 1 1
2 1 0 1 1
3 0 0 1 1
4 1 0 1 1
.. ... ... ... ...
995 0 0 0 0
996 1 0 0 0
997 0 0 1 0
998 1 1 0 1
999 1 0 1 1
model = bn.structure_learning.fit(df)
# Compute edge strength with the chi-square test statistic
model = bn.independence_test(model, df)
G = bn.plot(model)
# Example: Structure Learning
model_hc_bic = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic')
model_hc_k2 = bn.structure_learning.fit(df, methodtype='hc', scoretype='k2')
model_hc_bdeu = bn.structure_learning.fit(df, methodtype='hc', scoretype='bdeu')
model_ex_bic = bn.structure_learning.fit(df, methodtype='ex', scoretype='bic')
model_ex_k2 = bn.structure_learning.fit(df, methodtype='ex', scoretype='k2')
model_ex_bdeu = bn.structure_learning.fit(df, methodtype='ex', scoretype='bdeu')
model_cl = bn.structure_learning.fit(df, methodtype='cl', root_node='Wet_Grass')
model_tan = bn.structure_learning.fit(df, methodtype='tan', root_node='Wet_Grass', class_node='Rain')
# Example: Parameter Learning
import bnlearn as bn
# Import dataframe
df = bn.import_example()
# As an example we set the CPD at False which returns an "empty" DAG
model = bn.import_DAG('sprinkler', CPD=False)
# Now we learn the parameters of the DAG using the df
model_update = bn.parameter_learning.fit(model, df)
# Make plot
G = bn.plot(model_update)
# Example: Inference
import bnlearn as bn
model = bn.import_DAG('sprinkler')
query = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1,'Sprinkler':0, 'Wet_Grass':1})
print(query)
print(query.df)
# Lets try another inference
query = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1})
print(query)
print(query.df)
Contributors
Setting up and maintaining bnlearn has been possible thanks to users and contributors. Thanks to:
Maintainer
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bnlearn-0.12.0.tar.gz
.
File metadata
- Download URL: bnlearn-0.12.0.tar.gz
- Upload date:
- Size: 80.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.12.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
4c74bb1a8dd0cbdb92a4abafb5525d502ee752a83d3725d06583d3ed8434be74
|
|
MD5 |
00c0ed7154595e9e82e95c7ee18649c4
|
|
BLAKE2b-256 |
4a6bfa79b86ed65f738ca15ccee83eeb617219f4acdeb29042399a722686fb98
|
File details
Details for the file bnlearn-0.12.0-py3-none-any.whl
.
File metadata
- Download URL: bnlearn-0.12.0-py3-none-any.whl
- Upload date:
- Size: 82.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.12.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
20da4d29debaeb19beb237246667df5e758f738f9e690b60c4c49e4a2e05ca9c
|
|
MD5 |
40f409256176d9d90dd449e1f8bffba7
|
|
BLAKE2b-256 |
e6e3b6ab29cfe6a526d8ec0575066735e87416abb91083353b143b4e75086154
|