Python package for learning the graphical structure of Bayesian networks, parameter learning, inference and sampling methods.
Project description
bnlearn - Graphical structure of Bayesian networks
Star it if you like it!
bnlearn
is Python package for learning the graphical structure of Bayesian networks, parameter learning, inference and sampling methods. This work is inspired by the R package (bnlearn.com) that has been very usefull to me for many years. Although there are very good Python packages for probabilistic graphical models, it still can remain difficult (and somethimes unnecessarily) to (re)build certain pipelines. Bnlearn for python (this package) is build on the pgmpy package and contains the most-wanted pipelines. Navigate to API documentations for more detailed information.
Method overview
Learning a Bayesian network can be split into two problems which are both implemented in this package:
- Structure learning: Given a set of data samples, estimate a DAG that captures the dependencies between the variables.
- Parameter learning: Given a set of data samples and a DAG that captures the dependencies between the variables, estimate the (conditional) probability distributions of the individual variables.
The following functions are available after importing bn.
# Import library
import bnlearn as bn
# Structure learning
bn.structure_learning.fit()
# Parameter learning
bn.parameter_learning.fit()
# Inference
bn.inference.fit()
# Based on a DAG, you can sample the number of samples you want.
bn.sampling()
# Load well known examples to play arround with or load your own .bif file.
bn.import_DAG()
# Load simple dataframe of sprinkler dataset.
bn.import_example()
# Compare 2 graphs
bn.compare_networks()
# Plot graph
bn.plot()
# To make the directed grapyh undirected
bn.to_undirected()
# Convert to one-hot datamatrix
bn.df2onehot()
# See below for the exact working of the functions
The following methods are also included:
- inference
- sampling
- comparing two networks
- loading bif files
- conversion of directed to undirected graphs
Contents
Installation
- Install bnlearn from PyPI (recommended). bnlearn is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
- It is distributed under the MIT license.
Requirements
- It is advisable to create a new environment.
conda create -n env_bnlearn python=3.8
conda activate env_bnlearn
conda install -c ankurankan pgmpy
# You may need to deactivate and then activate your environment otherwise the packages may not been recognized.
conda deactivate
conda activate env_bnlearn
# The packages below are handled by the requirements in the bnlearn pip installer. So you dont need to do them manually.
pip install sklearn pandas tqdm funcsigs statsmodels community packaging
Quick Start
pip install bnlearn
- Alternatively, install bnlearn from the GitHub source:
git clone https://github.com/erdogant/bnlearn.git
cd bnlearn
pip install -U .
Import bnlearn package
import bnlearn as bn
Example: Structure Learning
# Example dataframe sprinkler_data.csv can be loaded with:
df = bn.import_example()
# df = pd.read_csv('sprinkler_data.csv')
model = bn.structure_learning.fit(df)
G = bn.plot(model)
df looks like this
Cloudy Sprinkler Rain Wet_Grass
0 0 1 0 1
1 1 1 1 1
2 1 0 1 1
3 0 0 1 1
4 1 0 1 1
.. ... ... ... ...
995 0 0 0 0
996 1 0 0 0
997 0 0 1 0
998 1 1 0 1
999 1 0 1 1
- Choosing various methodtypes and scoringtypes:
model_hc_bic = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic')
model_hc_k2 = bn.structure_learning.fit(df, methodtype='hc', scoretype='k2')
model_hc_bdeu = bn.structure_learning.fit(df, methodtype='hc', scoretype='bdeu')
model_ex_bic = bn.structure_learning.fit(df, methodtype='ex', scoretype='bic')
model_ex_k2 = bn.structure_learning.fit(df, methodtype='ex', scoretype='k2')
model_ex_bdeu = bn.structure_learning.fit(df, methodtype='ex', scoretype='bdeu')
Example: Parameter Learning
# Import dataframe
df = bn.import_example()
# As an example we set the CPD at False which returns an "empty" DAG
model = bn.import_DAG('sprinkler', CPD=False)
# Now we learn the parameters of the DAG using the df
model_update = bn.parameter_learning.fit(model, df)
# Make plot
G = bn.plot(model_update)
Example: Inference
model = bn.import_DAG('sprinkler')
q_1 = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1,'Sprinkler':0, 'Wet_Grass':1})
q_2 = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1})
Example: Sampling to create dataframe
model = bn.import_DAG('sprinkler')
df = bn.sampling(model, n=1000)
- Output of the model:
[bnlearn] Model correct: True
CPD of Cloudy:
+-----------+-----+
| Cloudy(0) | 0.5 |
+-----------+-----+
| Cloudy(1) | 0.5 |
+-----------+-----+
CPD of Sprinkler:
+--------------+-----------+-----------+
| Cloudy | Cloudy(0) | Cloudy(1) |
+--------------+-----------+-----------+
| Sprinkler(0) | 0.5 | 0.9 |
+--------------+-----------+-----------+
| Sprinkler(1) | 0.5 | 0.1 |
+--------------+-----------+-----------+
CPD of Rain:
+---------+-----------+-----------+
| Cloudy | Cloudy(0) | Cloudy(1) |
+---------+-----------+-----------+
| Rain(0) | 0.8 | 0.2 |
+---------+-----------+-----------+
| Rain(1) | 0.2 | 0.8 |
+---------+-----------+-----------+
CPD of Wet_Grass:
+--------------+--------------+--------------+--------------+--------------+
| Sprinkler | Sprinkler(0) | Sprinkler(0) | Sprinkler(1) | Sprinkler(1) |
+--------------+--------------+--------------+--------------+--------------+
| Rain | Rain(0) | Rain(1) | Rain(0) | Rain(1) |
+--------------+--------------+--------------+--------------+--------------+
| Wet_Grass(0) | 1.0 | 0.1 | 0.1 | 0.01 |
+--------------+--------------+--------------+--------------+--------------+
| Wet_Grass(1) | 0.0 | 0.9 | 0.9 | 0.99 |
+--------------+--------------+--------------+--------------+--------------+
[bnlearn] Nodes: ['Cloudy', 'Sprinkler', 'Rain', 'Wet_Grass']
[bnlearn] Edges: [('Cloudy', 'Sprinkler'), ('Cloudy', 'Rain'), ('Sprinkler', 'Wet_Grass'), ('Rain', 'Wet_Grass')]
[bnlearn] Independencies:
(Cloudy _|_ Wet_Grass | Rain, Sprinkler)
(Sprinkler _|_ Rain | Cloudy)
(Rain _|_ Sprinkler | Cloudy)
(Wet_Grass _|_ Cloudy | Rain, Sprinkler)
Example: Loading DAG from bif files
bif_file= 'sprinkler'
bif_file= 'alarm'
bif_file= 'andes'
bif_file= 'asia'
bif_file= 'pathfinder'
bif_file= 'sachs'
bif_file= 'miserables'
bif_file= 'filepath/to/model.bif'
# Loading example dataset
model = bn.import_DAG(bif_file)
Example: Comparing networks
# Load asia DAG
model = bn.import_DAG('asia')
# plot ground truth
G = bn.plot(model)
# Sampling
df = bn.sampling(model, n=10000)
# Structure learning of sampled dataset
model_sl = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic')
# Plot based on structure learning of sampled data
bn.plot(model_sl, pos=G['pos'])
# Compare networks and make plot
bn.compare_networks(model, model_sl, pos=G['pos'])
Graph of ground truth
Graph based on Structure learning
Graph comparison ground truth vs. structure learning
Citation
Please cite bnlearn in your publications if this is useful for your research. Here is an example BibTeX entry:
@misc{erdogant2019bnlearn,
title={bnlearn},
author={Erdogan Taskesen},
year={2019},
howpublished={\url{https://github.com/erdogant/bnlearn}},
}
References
- https://erdogant.github.io/bnlearn/
- http://pgmpy.org
- https://programtalk.com/python-examples/pgmpy.factors.discrete.TabularCPD/
- http://www.bnlearn.com/
- http://www.bnlearn.com/bnrepository/
Maintainer
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.