Skip to main content

BNLP is a natural language processing toolkit for Bengali Language

Project description

Bengali Natural Language Processing(BNLP)

BNLP is a natural language processing toolkit for Bengali Language. This tool will help you to tokenize Bengali text, Embedding Bengali words, Bengali POS Tagging, Bengali Name Entity Recognition, Construct Neural Model for Bengali NLP purposes.

NB: Any Researcher who refer this tool in his/her paper please let us know, we will include paper link here

Documentation

For full documentation follow bnlp documentation

Installation

PIP installer(python 3.5, 3.6, 3.7 tested okay)

pip install bnlp_toolkit

Pretrained Model

Download Link

Tokenization

  • Bengali SentencePiece Tokenization

    • tokenization using trained model
      from bnlp import SentencepieceTokenizer
      
      bsp = SentencepieceTokenizer()
      model_path = "./model/bn_spm.model"
      input_text = "আমি ভাত খাই। সে বাজারে যায়।"
      tokens = bsp.tokenize(model_path, input_text)
      print(tokens)
      text2id = bsp.text2id(model_path, input_text)
      print(text2id)
      id2text = bsp.id2text(model_path, text2id)
      print(id2text)
      
    • Training SentencePiece
      from bnlp import SentencepieceTokenizer
      
      bsp = SentencepieceTokenizer()
      data = "test.txt"
      model_prefix = "test"
      vocab_size = 5
      bsp.train(data, model_prefix, vocab_size) 
      
  • Basic Tokenizer

    from bnlp import BasicTokenizer
    basic_tokenizer = BasicTokenizer()
    raw_text = "আমি বাংলায় গান গাই।"
    tokens = basic_tokenizer.tokenize(raw_text)
    print(tokens)
    
    # output: ["আমি", "বাংলায়", "গান", "গাই", "।"]
    
  • NLTK Tokenization

    from bnlp import NLTKTokenizer
    
    text = "আমি ভাত খাই। সে বাজারে যায়। তিনি কি সত্যিই ভালো মানুষ?"
    bnltk = NLTKTokenizer()
    word_tokens = bnltk.word_tokenize(text)
    sentence_tokens = bnltk.sentence_tokenize(text)
    print(word_tokens)
    print(sentence_tokens)
    
    # output
    # word_token: ["আমি", "ভাত", "খাই", "।", "সে", "বাজারে", "যায়", "।", "তিনি", "কি", "সত্যিই", "ভালো", "মানুষ", "?"]
    # sentence_token: ["আমি ভাত খাই।", "সে বাজারে যায়।", "তিনি কি সত্যিই ভালো মানুষ?"]
    

Word Embedding

  • Bengali Word2Vec

    • Generate Vector using pretrain model

      from bnlp import BengaliWord2Vec
      
      bwv = BengaliWord2Vec()
      model_path = "bengali_word2vec.model"
      word = 'আমার'
      vector = bwv.generate_word_vector(model_path, word)
      print(vector.shape)
      print(vector)
      
    • Find Most Similar Word Using Pretrained Model

      from bnlp import BengaliWord2Vec
      
      bwv = BengaliWord2Vec()
      model_path = "bengali_word2vec.model"
      word = 'গ্রাম'
      similar = bwv.most_similar(model_path, word)
      print(similar)
      
    • Train Bengali Word2Vec with your own data

      from bnlp import BengaliWord2Vec
      bwv = BengaliWord2Vec()
      data_file = "sample.txt"
      model_name = "test_model.model"
      vector_name = "test_vector.vector"
      bwv.train(data_file, model_name, vector_name)
      
  • Bengali FastText

    To use fasttext you need to install fasttext manually by pip install fasttext==0.9.2

    NB: it will not work in windows, it will only work in linux

    • Generate Vector Using Pretrained Model

      from bnlp.embedding.fasttext import BengaliFasttext
      
      bft = BengaliFasttext()
      word = "গ্রাম"
      model_path = "bengali_fasttext_wiki.bin"
      word_vector = bft.generate_word_vector(model_path, word)
      print(word_vector.shape)
      print(word_vector)
      
    • Train Bengali FastText Model

      from bnlp.embedding.fasttext import BengaliFasttext
      
      bft = BengaliFasttext()
      data = "sample.txt"
      model_name = "saved_model.bin"
      epoch = 50
      bft.train(data, model_name, epoch)
      
  • Bengali GloVe Word Vectors

    We trained glove model with bengali data(wiki+news articles) and published bengali glove word vectors
    You can download and use it on your different machine learning purposes.

    from bnlp import BengaliGlove
    glove_path = "bn_glove.39M.100d.txt"
    word = "গ্রাম"
    bng = BN_Glove()
    res = bng.closest_word(glove_path, word)
    print(res)
    vec = bng.word2vec(glove_path, word)
    print(vec)
    

Bengali POS Tagging

  • Bengali CRF POS Tagging

    • Find Pos Tag Using Pretrained Model

      from bnlp import POS
      bn_pos = POS()
      model_path = "model/bn_pos.pkl"
      text = "আমি ভাত খাই।"
      res = bn_pos.tag(model_path, text)
      print(res)
      # [('আমি', 'PPR'), ('ভাত', 'NC'), ('খাই', 'VM'), ('।', 'PU')]
      
    • Train POS Tag Model

      from bnlp import POS
      bn_pos = POS()
      model_name = "pos_model.pkl"
      tagged_sentences = [[('রপ্তানি', 'JJ'), ('দ্রব্য', 'NC'), ('-', 'PU'), ('তাজা', 'JJ'), ('ও', 'CCD'), ('শুকনা', 'JJ'), ('ফল', 'NC'), (',', 'PU'), ('আফিম', 'NC'), (',', 'PU'), ('পশুচর্ম', 'NC'), ('ও', 'CCD'), ('পশম', 'NC'), ('এবং', 'CCD'),('কার্পেট', 'NC'), ('৷', 'PU')], [('মাটি', 'NC'), ('থেকে', 'PP'), ('বড়জোর', 'JQ'), ('চার', 'JQ'), ('পাঁচ', 'JQ'), ('ফুট', 'CCL'), ('উঁচু', 'JJ'), ('হবে', 'VM'), ('৷', 'PU')]]
      
      bn_pos.train(model_name, tagged_sentences)
      

Bengali NER

  • Bengali CRF NER

    • Find NER Tag Using Pretrained Model

      from bnlp import NER
      bn_ner = NER()
      model_path = "model/bn_ner.pkl"
      text = "সে ঢাকায় থাকে।"
      result = bn_ner.tag(model_path, text)
      print(result)
      # [('সে', 'O'), ('ঢাকায়', 'S-LOC'), ('থাকে', 'O')]
      
    • Train NER Tag Model

      from bnlp import NER
      bn_ner = NER()
      model_name = "ner_model.pkl"
      tagged_sentences = [[('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')]]
      
      bn_ner.train(model_name, tagged_sentences)
      

Bengali Corpus Class

  • Stopwords and Punctuations

    from bnlp.corpus import stopwords, punctuations
    
    stopwords = stopwords() 
    print(stopwords)
    print(punctuations)
    
  • Remove stopwords from Text

    from bnlp.corpus import stopwords
    from bnlp.corpus.util import remove_stopwords
    
    stopwords = stopwords()
    raw_text = 'আমি ভাত খাই।' 
    result = remove_stopwords(raw_text, stopwords)
    print(result)
    # ['ভাত', 'খাই', '।']
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bnlp_toolkit-3.0.0.dev1.tar.gz (11.7 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

bnlp_toolkit-3.0.0.dev1-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file bnlp_toolkit-3.0.0.dev1.tar.gz.

File metadata

  • Download URL: bnlp_toolkit-3.0.0.dev1.tar.gz
  • Upload date:
  • Size: 11.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.9

File hashes

Hashes for bnlp_toolkit-3.0.0.dev1.tar.gz
Algorithm Hash digest
SHA256 502915a65ea62733c785ff1760bfddac924f6e669a8d99e0a814c98dcf773cdc
MD5 679f087c4b63130e97e2f2976a902ae5
BLAKE2b-256 4503cb1618c725bccaceaa938c972ccb1e1617bf9eac860d6e1e0ee5f1a3328d

See more details on using hashes here.

File details

Details for the file bnlp_toolkit-3.0.0.dev1-py3-none-any.whl.

File metadata

  • Download URL: bnlp_toolkit-3.0.0.dev1-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.9

File hashes

Hashes for bnlp_toolkit-3.0.0.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 152715ba41accc8d36bdb610831847061a32a98d03ee1cc4e96c5feebfb28db9
MD5 90d826f6ec39dc8473b261f25cee9f4d
BLAKE2b-256 a2cf118c8f469824938c44e0e69bcda51293e2fc306faa7731e9755c7978c3a6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page