Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Python library for Bayesian Optimization.

Project Description

BOlib

A python library for Bayesian Optimization.

Setup BOlib

  • The following packages must be installed before installing BOlib
# for ptyhon3
apt-get install python3-tk
# or for python2
apt-get install python-tk
  • Create and activate virtualenv (for python2) or venv (for ptyhon3)
# for ptyhon3
python3 -m venv --system-site-packages .env
# or for python2
virtualenv --system-site-packages .env

source .env/bin/activate
  • Upgrade pip
# for ptyhon3
python3 -m pip install --upgrade pip
# or for python2
python -m pip install --upgrade pip
  • Install GPlib package
python -m pip install bolib

Use BOlib

  • Import BOlib to use it in your python script.
import bolib
  • Some well-known objetive functions have been included.
of = bolib.ofs.Branin()

of.evaluate([1.0, 1.0]) # 27.702905548512433
  • To use Bayesian Optimization we need a probabilistic model. In this example we will use Gaussian Processes.
import gplib
import numpy as np

# We initialize data before the first evaluation.

data = {
    'X': np.zeros((2, len(of.get_bounds()))),
    'Y': np.array([[-1.0], [1.0]])
}

model = gplib.GP(
    gplib.mea.Constant(data),
    gplib.cov.SquaredExponential(data, is_ard=True),
    gplib.lik.Gaussian(is_noisy=True),
    gplib.inf.ExactGaussian(),
    gplib.fit.HparamOptimization(
        maxiter=75, maxfuncall=200, ls_method="Powell"
    )
)
  • Bayesian Optimization also needs an acquisition function.
af = bolib.afs.ExpectedImprovement()
  • Finally, we can initialize our optimization model and start the optimization process.
# We get a random sample within the bounds of the objective function
seed = 48948
bo = bolib.methods.BayesianOptimization(model, af, seed)

x0 = bolib.util.random_sample(of.get_bounds(), batch_size=10)

bo.minimize(
    of.evaluate, x0,
    bounds=of.get_bounds(),
    tol=1e-7,
    maxiter=of.get_max_eval(),
    disp=True
)
  • BOlib is also Scipy compatible.
import scipy.optimize as spo

result = spo.minimize(
    of.evaluate,
    x0,
    bounds=of.get_bounds(),
    method=bo.minimize,
    tol=1e-7,
    options={
        'maxiter': of.get_max_eval(),
        'disp': True
    }
)
  • There are more examples in examples/ directory. Check them out!

Develop BOlib

  • Download the repository using git
git clone https://github.com/ibaidev/bolib.git
cd bolib
git config user.email 'MAIL'
git config user.name 'NAME'
git config credential.helper 'cache --timeout=300'
git config push.default simple
  • Update API documentation
source ./.env/bin/activate
pip install Sphinx
cd docs/
sphinx-apidoc -f -o ./ ../boplib
Release History

Release History

This version
History Node

0.19.3

History Node

0.19.2

History Node

0.19.1

History Node

0.19.0

History Node

0.18.2

History Node

0.18.1

History Node

0.17.5

History Node

0.17.3

History Node

0.17.2

History Node

0.17.1

History Node

0.17.0

History Node

0.16.0

History Node

0.15.2

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
bolib-0.19.3-py2.py3-none-any.whl (25.2 kB) Copy SHA256 Checksum SHA256 py2.py3 Wheel Jan 16, 2018
bolib-0.19.3.tar.gz (22.6 kB) Copy SHA256 Checksum SHA256 Source Jan 16, 2018

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting