Skip to main content

Deep learning software to decode EEG, ECG or MEG signals

Project description

DOI Docs Build Status Test Build Status Code Coverage PyPI Version Python versions Downloads

Braindecode

Braindecode is an open-source Python toolbox for decoding raw electrophysiological brain data with deep learning models. It includes dataset fetchers, data preprocessing and visualization tools, as well as implementations of several deep learning architectures and data augmentations for analysis of EEG, ECoG and MEG.

For neuroscientists who want to work with deep learning and deep learning researchers who want to work with neurophysiological data.

Installation Braindecode

  1. Install pytorch from http://pytorch.org/ (you don’t need to install torchvision).

  2. If you want to download EEG datasets from MOABB, install it:

pip install moabb
  1. Install latest release of braindecode via pip:

pip install braindecode

If you want to install the latest development version of braindecode, please refer to contributing page

Documentation

Documentation is online under https://braindecode.org, both in the stable and dev versions.

Contributing to Braindecode

Guidelines for contributing to the library can be found on the braindecode github:

https://github.com/braindecode/braindecode/blob/master/CONTRIBUTING.md

Citing

If you use Braindecode in scientific work, please cite the software using the Zenodo DOI shown in the badge below:

DOI

Additionally, we highly encourage you to cite the article that originally introduced the Braindecode library and has served as a foundational reference for many works on deep learning with EEG recordings. Please use the following reference:

@article {HBM:HBM23730,
author = {Schirrmeister, Robin Tibor and Springenberg, Jost Tobias and Fiederer,
  Lukas Dominique Josef and Glasstetter, Martin and Eggensperger, Katharina and Tangermann, Michael and
  Hutter, Frank and Burgard, Wolfram and Ball, Tonio},
title = {Deep learning with convolutional neural networks for EEG decoding and visualization},
journal = {Human Brain Mapping},
issn = {1097-0193},
url = {http://dx.doi.org/10.1002/hbm.23730},
doi = {10.1002/hbm.23730},
month = {aug},
year = {2017},
keywords = {electroencephalography, EEG analysis, machine learning, end-to-end learning, brain–machine interface,
  brain–computer interface, model interpretability, brain mapping},
}

as well as the MNE-Python software that is used by braindecode:

@article{10.3389/fnins.2013.00267,
author={Gramfort, Alexandre and Luessi, Martin and Larson, Eric and Engemann, Denis and Strohmeier, Daniel and Brodbeck, Christian and Goj, Roman and Jas, Mainak and Brooks, Teon and Parkkonen, Lauri and Hämäläinen, Matti},
title={{MEG and EEG data analysis with MNE-Python}},
journal={Frontiers in Neuroscience},
volume={7},
pages={267},
year={2013},
url={https://www.frontiersin.org/article/10.3389/fnins.2013.00267},
doi={10.3389/fnins.2013.00267},
issn={1662-453X},
}

Licensing

This project is primarily licensed under the BSD-3-Clause License.

Additional Components

Some components within this repository are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Please refer to the LICENSE and NOTICE files for more detailed information.

Project details


Release history Release notifications | RSS feed

This version

1.3.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

braindecode-1.3.2.tar.gz (842.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

braindecode-1.3.2-py3-none-any.whl (448.8 kB view details)

Uploaded Python 3

File details

Details for the file braindecode-1.3.2.tar.gz.

File metadata

  • Download URL: braindecode-1.3.2.tar.gz
  • Upload date:
  • Size: 842.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for braindecode-1.3.2.tar.gz
Algorithm Hash digest
SHA256 dc5cb6bae187e88bc816cdd40e3af4c2a35a854be4658fde4cacc1d4b3ab95e1
MD5 f39c37ffd83f5582dc99dd8f44e5b845
BLAKE2b-256 6827b57c68a4b7a2ff241f79efe25b5d3146884c690edec395531b281fe63333

See more details on using hashes here.

File details

Details for the file braindecode-1.3.2-py3-none-any.whl.

File metadata

  • Download URL: braindecode-1.3.2-py3-none-any.whl
  • Upload date:
  • Size: 448.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for braindecode-1.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2fb6237c95fce0472234e470576f2ee1e72738dc585ea579b5e41f6756005d14
MD5 74cd9595de90853a93eeda5e09b3051b
BLAKE2b-256 094f38698463b9b102d1c95b083189be5a72cb9444ebd55d22026ee8d1f25fae

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page