Skip to main content

Brainome Table Compiler

Project description

Brainome(tm)

Project description

Brainome is a data compiler that automatically solves supervised machine learning problems with repeatable and reproducible results and creates standalone python predictors.

Brainome’s philosophy is that data science should be accessible to all:

  • Run on your machine or in your cloud.
  • Keep your data local.
  • Own your model python code - run it anywhere.
  • Single “compiler like” command to convert you data in a model in a single step.
  • Automatic data format conversion (text, numbers, etc..).
  • No hyper-parameter tuning through measurements.
  • Unlimited dimensionality (premium).

Brainome offer unique data insight and helps answer:

  • Do I have enough data and the right feature?
  • What features are important (attribute ranking)?
  • What model type will work best?
  • Is my model overfitting?

Brainome’s predictors:

  • Run as executable or import as library.
  • Are hardware independent.
  • Are self contained in a single python file and integrate easily in standard CI/CD flow, Github, etc…

Brainome is free for personal use or evaluation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

brainome-1.7.89-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

brainome-1.7.89-cp39-cp39-macosx_10_15_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

brainome-1.7.89-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

brainome-1.7.89-cp38-cp38-macosx_10_15_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

brainome-1.7.89-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

brainome-1.7.89-cp37-cp37m-macosx_10_15_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file brainome-1.7.89-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for brainome-1.7.89-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 38a6b19fb5a694106c8c33a455568f5f463fb16573dc6bed0e90467bdcd68408
MD5 53d8ff7743b53bdc4c0f610819ea7329
BLAKE2b-256 5aed272c9786a99d62ef33dcdf9c03958f1eccd6cb64c41bd0cc7aef55cf9230

See more details on using hashes here.

File details

Details for the file brainome-1.7.89-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: brainome-1.7.89-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.8

File hashes

Hashes for brainome-1.7.89-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0f4c31af1fa9b9fdfc4165efb392ac6986a85acb11a40e5812be7f9ec801ce85
MD5 c84bf1d0f391fb4ff5e41a6b6cb0daf8
BLAKE2b-256 175d08b4678d77d66abb9c3b623488975edce187c1b1225eea77a819b8cc9722

See more details on using hashes here.

File details

Details for the file brainome-1.7.89-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for brainome-1.7.89-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 b7f9ba55a418bb84b4b5ab933d2dac610f0280512d1038e49606a51c72943c28
MD5 361ad5bad21ad9cbca891ced88f53f43
BLAKE2b-256 9d0232daea8ec2263ec78a96895ab8d4ee11550369ad10716fd9f77610aa0463

See more details on using hashes here.

File details

Details for the file brainome-1.7.89-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: brainome-1.7.89-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.8

File hashes

Hashes for brainome-1.7.89-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0adfe196ddfd39c92f03841d2544fecf5a605093196b5a9fadaf64096b7133cf
MD5 7b4baac82440103fe8794a1c1d7d914a
BLAKE2b-256 2a1d816da793f20fe7429df540f0b48e52d48eb6aa1f515340f4001c4eed5559

See more details on using hashes here.

File details

Details for the file brainome-1.7.89-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for brainome-1.7.89-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 75168e46639fdf6e134676504e4c2d205a730adc2d44dc2bc962c35a81b5d66a
MD5 43372f2a41325278a076dd3916c38a4d
BLAKE2b-256 1af0f20be51358e6789b42a4a89ac53a33aa7c5afe62b2deca31ab296e015e45

See more details on using hashes here.

File details

Details for the file brainome-1.7.89-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: brainome-1.7.89-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.8

File hashes

Hashes for brainome-1.7.89-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dbdedc176d5e48bc29668a0dd29f4cc4cdd509b9a59ad24684d8d9da6bd68c7d
MD5 af28de6f7ffe5d44ce59f29e7409f680
BLAKE2b-256 097ba4760c851bf58164f05bf8bb8c901d7b57683d0e15474a69c1a564c57232

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page