A scripting language to simply manage a very large amount of i/o heavy workloads. Such as API calls for your ETL, ELT or any program needing Python and/or SQL
Project description
Buelon
A scripting language to simply manage a very large amount of i/o heavy workloads. Such as API calls for your ETL, ELT or any program needing Python and/or SQL
Table of Contents
Installation
pip install buelon
That's it!
This will install the cli command bue
. Check install by running bue --version
or bue -v
Note:
This package uses Cython and you may need to install python3-dev
using
sudo apt-get install python3-dev
[more commands and information].
If you would like to use this repository without Cython,
you may git clone
since it is not technically dependent on
these scripts, but they do provide a significant performance boost.
Quick Start
- Run bucket server:
bue bucket -b 0.0.0.0:61535
- Run hub:
bue hub -b 0.0.0.0:65432 -k localhost:61535
- Run n worker(s):
bue worker -b localhost:65432 -k localhost:61535
- Upload code:
bue upload -b localhost:65432 -f path/to/file.bue
Production Start
Security: Make sure bucket, hub and workers are under
a private network only
(you will need a web server or something similar
under the same private network
to access this tool using bue upload -f path/to/file.bue
)
With Postgres (Under 1,000,000 Jobs at once)
- Create a
.env
file
PIPE_WORKER_SCOPES=production-very-heavy,production-heavy,production-medium,production-small,testing-heavy,testing-medium,testing-small,default
PIPE_WORKER_SUBPROCESS_JOBS=false
N_WORKER_PROCESSES="25"
USING_POSTGRES_HUB=true
USING_POSTGRES_BUCKET="true"
POSTGRES_HOST="123.45.67.89"
POSTGRES_PORT="5432"
POSTGRES_USER="daniel"
POSTGRES_PASSWORD="Password123"
POSTGRES_DATABASE="my_db"
- Run n worker(s):
bue worker -b localhost:65432 -k localhost:61535
- Upload code:
bue upload -b localhost:65432 -f ./example.bue
Without Postgres (Under 10,000 jobs at once)
- Create a
.env
file
PIPE_WORKER_SCOPES=production-very-heavy,production-heavy,production-medium,production-small,testing-heavy,testing-medium,testing-small,default
PIPE_WORKER_SUBPROCESS_JOBS=false
N_WORKER_PROCESSES="15"
PIPE_WORKER_HOST="123.45.67.89"
PIPE_WORKER_PORT="65432"
PIPELINE_HOST="0.0.0.0"
PIPELINE_PORT="65432"
BUCKET_SERVER_HOST="0.0.0.0"
BUCKET_SERVER_PORT="61535"
BUCKET_CLIENT_HOST="123.45.67.89"
BUCKET_CLIENT_PORT="61535"
- Run bucket server:
bue bucket
- Run hub:
bue hub
- Run n worker(s):
bue worker
- Upload code:
bue upload -f ./example.bue
Supported Languages
- Python
- SQLite3
- PostgreSQL
Learn by Example
(see below for example.py
contents)
# IMPORTANT: tabs are 4 spaces. white_space == " "
# [Optional] change tab sizes like this
TAB = ' '
# set config values globally
!scope production-small # job scope [see bellow]
!priority 0 # higher priority jobs are run first
!timeout 20 * 60 # job's max time to run in seconds
!retries 0 # how many times a job can run after error
# setting scopes is how you make new jobs with errors
# not interfere with all servers job queues
# and/or how you handle running heavy processes on large machine
# and small process on small machines
# define a single job called `accounts`
accounts:
python # <-- select the language to be run. currently only python, sqlite3 and postgres are available
accounts # select the function(for python) or table(for sql) name that will be used
example.py # either provide a file or write code directly using the "`" char (see below example)
# or
# define multiple jobs with:
import python (
request_report
as request,
get_status
as status
!scope testing-small,
get_report
as download
!priority 9
!timeout 60**2 * 5 / (1 % 2) // (1 + 1 - 1), # 5 hrs
transform_data
as py_transform
!scope production-heavy,
upload_to_db as upload
) example.py # <-- file path or using "`" like sql below
manipulate_data:
sqlite3
some_table # *vvvv* see below for writing code directly *vvvv*
`
SELECT
*,
CASE
WHEN sales = 0
THEN 0.0
ELSE spend / sales
END AS acos
FROM some_table
`
## this one's just to show postgres as well
#manipulate_data_again:
# postgres
# another_table
# `
#select
# *,
# case
# when spend = 0
# then 0.0
# else sales / spend
# end AS roas
#from another_table
#`
# these are pipes and what will tell the server what order to run the steps
# and also transfer the returned data between steps
# each step will be run individually and could be run on a different computer each time
accounts_pipe = | accounts # single pipes currently need a `|` before or behind the value
# api_pipe = request | status | download | manipulate_data | py_transform | upload
# # or
api_pipe = (
request | status | download
| manipulate_data | py_transform | upload
)
# currently there are only two syntax's for "running" pipes.
# either by itself:
# pipe()
#
# or in a loop:
# for value in pipe1():
# pipe2(value)
# # Another Example:
# v = pipe() # <-- single call
# pipe2(v)
for account in accounts_pipe():
api_pipe(account)
example.py
import time
import random
import uuid
import logging
from typing import List, Dict, Union
from buelon.core.step import Result, StepStatus
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def accounts(*args) -> List[Dict[str, Union[int, str]]]:
"""Returns a list of sample account dictionaries.
Returns:
List[Dict[str, Union[int, str]]]: A list of dictionaries containing account information.
"""
account_list = [
{'id': 0, 'name': 'Account 1'},
{'id': 2, 'name': 'Account 2'},
{'id': 3, 'name': 'Account 4'},
]
logger.info(f"Retrieved {len(account_list)} accounts")
return account_list
def request_report(config: Dict[str, Union[int, str]]) -> Dict[str, Union[Dict, uuid.UUID, float]]:
"""Simulates a report request for a given account.
Args:
config (Dict[str, Union[int, str]]): A dictionary containing account information.
Returns:
Dict[str, Union[Dict, uuid.UUID, float]]: A dictionary with account data and request details.
"""
account_id = config['id']
request = {
'report_id': uuid.uuid4(),
'time': time.time(),
'account_id': account_id
}
logger.info(f"Requested report for account ID: {account_id}, Report ID: {request['report_id']}")
return {
'account': config,
'request': request
}
def get_status(config: Dict[str, Union[Dict, uuid.UUID, float]]) -> Union[Dict, Result]:
"""Checks the status of a report request.
Args:
config (Dict[str, Union[Dict, uuid.UUID, float]]): A dictionary containing request information.
Returns:
Union[Dict, Result]: Either the input config if successful, or a Result object if pending.
"""
requested_time = config['request']['time']
account_id = config['account']['id']
status = 'success' if requested_time + random.randint(10, 15) < time.time() else 'pending'
if status == 'pending':
logger.info(f"Report status for account ID {account_id} is pending")
return Result(status=StepStatus.pending)
logger.info(f"Report status for account ID {account_id} is success")
return config
def get_report(config: Dict[str, Union[Dict, uuid.UUID, float]]) -> Union[Dict, Result]:
"""Retrieves a report or simulates an error.
Args:
config (Dict[str, Union[Dict, uuid.UUID, float]]): A dictionary containing request configuration.
Returns:
Union[Dict, Result]: Either a dictionary with report data or a Result object for reset.
Raises:
ValueError: If an unexpected error occurs.
"""
account_id = config['account']['id']
if random.randint(0, 10) == 0:
report_data = {'status': 'error', 'msg': 'timeout error'}
else:
report_data = [
{'sales': i * 10, 'spend': i % 10, 'clicks': i * 13}
for i in range(random.randint(25, 100))
]
if not isinstance(report_data, list):
if isinstance(report_data, dict):
if (report_data.get('status') == 'error'
and report_data.get('msg') == 'timeout error'):
logger.warning(f"Timeout error for account ID {account_id}. Resetting.")
return Result(status=StepStatus.reset)
error_msg = f'Unexpected error: {report_data}'
logger.error(f"Error getting report for account ID {account_id}: {error_msg}")
raise ValueError(error_msg)
logger.info(f"Successfully retrieved report for account ID {account_id} with {len(report_data)} rows")
return {
'config': config,
'table_data': report_data
}
def transform_data(data: Dict[str, Union[Dict, List[Dict]]]) -> None:
"""Transforms the report data by adding account information to each row.
Args:
data (Dict[str, Union[Dict, List[Dict]]]): A dictionary containing config and table data.
"""
config = data['config']
table_data = data['table_data']
account_name = config['account']['name']
for row in table_data:
row['account'] = account_name
logger.info(f"Transformed {len(table_data)} rows of data for account: {account_name}")
def upload_to_db(data: Dict[str, Union[Dict, List[Dict]]]) -> None:
"""Handles table upload to database.
Args:
data (Dict[str, Union[Dict, List[Dict]]]): A dictionary containing table data to be uploaded.
"""
table_data = data['table_data']
account_name = data['config']['account']['name']
# Implementation for database upload
logger.info(f"Uploaded {len(table_data)} rows to the database for account: {account_name}")
Known Defects
Error handling and logging are currently lacking
Future Plans
If this projects sees some love,
or I just find more free time,
I'd like to support more languages like node
or deno
and
even compiled languages such as
rust
, go
and c++
.
Allowing teams that write different
languages to work on the same program.
Web app for logging, execution and worker management
Add a scheduler process to allow scheduled pipelines
License
- MIT License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file buelon-1.0.68.tar.gz
.
File metadata
- Download URL: buelon-1.0.68.tar.gz
- Upload date:
- Size: 99.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d52b73c7ba421cc9185293e45dcdca53ef679e34238d8841db8f1cd30fb6ea39
|
|
MD5 |
faa561982e62961439e9e6639aaddeb6
|
|
BLAKE2b-256 |
191c9bd7384c8f7240272a0edab02c4c8367aa992138cf31bfbdc7931e1f905b
|
File details
Details for the file buelon-1.0.68-py3-none-any.whl
.
File metadata
- Download URL: buelon-1.0.68-py3-none-any.whl
- Upload date:
- Size: 109.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
027f29f94aa1f9f33e875d86eeebec6b56388cbcb53cd0b3f0a68dd04347eb18
|
|
MD5 |
376a90acbd334fd8e1ba1cfa36d9c461
|
|
BLAKE2b-256 |
4283d6ec8e810bcc7fdf3e27f77b7d122cae7badfd895c713932848cca9b659f
|