Skip to main content

cache tools with async power

Project description

🥔 CASHEWS 🥔

Async cache utils with simple API to build fast and reliable applications

pip install cashews
pip install cashews[redis]  # Aioredis is now in redis-py 4.2.0rc1+ 
pip install cashews[aioredis]  # Please install "redis" instead, unless you must maintain a legacy code.
pip install cashews[diskcache]
pip install cashews[speedup] # for bloom filters

Why

Cache plays a significant role in modern applications and everybody want to use all power of async programming and cache. There are a few advanced techniques with cache and async programming that can help you build simple, fast, scalable and reliable applications. This library intends to make it easy to implement such techniques.

Features

  • Easy to configure and use
  • Decorator-based API, just decorate and play
  • Different cache strategies out-of-the-box
  • Support for multiple storage backends (In-memory, Redis, DiskCache)
  • Set ttl with string (2h5m) or with timedelta
  • Middlewares
  • Client-side cache (10x faster than simple cache with redis)
  • Bloom filters
  • Different cache invalidation techniques (time-based and function-call based)
  • Cache any objects securely with pickle (use hash key)
  • 2x faster then aiocache

Usage Example

from cashews import cache

cache.setup("mem://")  # configure as in-memory cache, but redis is also supported

# use a decorator-based API
@cache(ttl="3h", key="user:{request.user.uid}")
async def long_running_function(request):
    ...

# or for fine-grained control, use it directly in a function
async def cache_using_function(request):
    await cache.set(key=request.user.uid, value=request.user, expire=60)
    ...

Table of Contents

Configuration

cashews provides a default cache, that you can setup in two different ways:

from cashews import cache

# via url
cache.setup("redis://0.0.0.0/?db=1&socket_connect_timeout=0.5&safe=0&hash_key=my_secret&enable=1")
# or via kwargs
cache.setup("redis://0.0.0.0/", db=1, wait_for_connection_timeout=0.5, safe=False, hash_key=b"my_key", enable=True)

Alternatively, you can create cache instance yourself:

from cashews import Cache

cache = Cache()
cache.setup(...)

Optionally, you can disable cache with enable parameter:

cache.setup("redis://redis/0?enable=1")
cache.setup("mem://?size=500", enable=False)

You can setup different Backends based on a prefix:

cache.setup("redis://redis/0")
cache.setup("mem://?size=500", prefix="user")

await cache.get("accounts")  # will use redis backend
await cache.get("user:1")  # will use memory backend

Available Backends

In-memory

In-memory cache uses fixed-sized LRU dict to store values. It checks expiration on get and periodically purge expired keys.

cache.setup("mem://")
cache.setup("mem://?check_interval=10&size=10000")

Redis

Requires redis package.
Note: If you must support a legacy code that uses aioredis, then install aioredis instead.

This will use Redis as a storage.

This backend uses pickle module to store values, but the cashes can store values with sha1-keyed hash. Use hash_key parameter to protect your application from security vulnerabilities.

Any connections errors are suppressed, to disable it use safe=False If you would like to use client-side cache set client_side=True Client side cache will add cashews: prefix for each key, to customize it use client_side_prefix option.

cache.setup("redis://0.0.0.0/?db=1&minsize=10&safe=false&hash_key=my_secret", prefix="func")
cache.setup("redis://0.0.0.0/2", password="my_pass", socket_connect_timeout=0.1, retry_on_timeout=True, hash_key="my_secret")
cache.setup("redis://0.0.0.0", client_side=True, client_side_prefix="my_prefix:")

For using secure connections to redis (over ssl) uri should have rediss as schema

cache.setup("rediss://0.0.0.0/", ssl_ca_certs="path/to/ca.crt", ssl_keyfile="path/to/client.key",ssl_certfile="path/to/client.crt",)

DiskCache

Requires diskcache package.

This will use local sqlite databases (with shards) as storage.

It is a good choice if you don't want to use redis, but you need a shared storage, or your cache takes a lot of local memory. Also, it is good choice for client side local storage.

You cat setup disk cache with FanoutCache parameters

** Warning ** cache.keys_match and cache.get_match does not work with this storage (works only if shards are disabled)

cache.setup("disk://")
cache.setup("disk://?directory=/tmp/cache&timeout=1&shards=0")  # disable shards
Gb = 1073741824
cache.setup("disk://", size_limit=3 * Gb, shards=12)

Basic API

There are few basic methods to work with cache:

from cashews import cache

cache.setup("mem://")  # configure as in-memory cache

await cache.set(key="key", value=90, expire=60, exist=None)  # -> bool
await cache.set_raw(key="key", value="str")  # -> bool
await cache.get("key", default=None)  # -> Any
await cache.get_raw("key")
await cache.get_many("key1", "key2", default=None)
await cache.incr("key") # -> int
await cache.delete("key")
await cache.delete_match("pattern:*")
async for key in cache.scan("pattern:*"):
    ...
async for key, value in cache.get_match("pattern:*", batch_size=100, default=None):
    ...

await cache.expire("key", timeout=10)
await cache.get_expire("key")  # -> int seconds to expire
await cache.ping(message=None)  # -> bytes
await cache.clear()
await cache.is_locked("key", wait=60)  # -> bool
async with cache.lock("key", expire=10):
    ...
await cache.set_lock("key", value="value", expire=60)  # -> bool
await cache.unlock("key", "value")  # -> bool

Strategies

Simple cache

This is typical cache strategy: execute, store and return from cache until it expired.

from datetime import timedelta

from cashews import cache

@cache(ttl=timedelta(hours=3), key="user:{request.user.uid}")
async def long_running_function(request):
    ...

Fail cache (Failover cache)

Return cache result, if one of the given exceptions is raised (at least one function call should be succeed prior that).

from cashews import cache  # or: from cashews import failover

# note: the key will be "__module__.get_status:name:{name}"
@cache.failover(ttl="2h", exceptions=(ValueError, MyException))  
async def get_status(name):
    value = await api_call()
    return {"status": value}

If exceptions didn't get will catch all exceptions or use default if it set by:

cache.set_default_fail_exceptions(ValueError, MyException)

Hit cache

Expire cache after given numbers of call cache_hits.

from cashews import cache  # or: from cashews import hit

@cache.hit(ttl="2h", cache_hits=100, update_after=2)
async def get(name):
    ...

Early

Cache strategy that tries to solve Cache stampede problem with a hot cache recalculating result in a background.

from cashews import cache  # or: from cashews import early

# if you call this function after 7 min, cache will be updated in a background 
@cache.early(ttl="10m", early_ttl="7m")  
async def get(name):
    value = await api_call()
    return {"status": value}

Soft

Like a simple cache, but with a fail protection base on soft ttl.

from cashews import cache

# if you call this function after 7 min, cache will be updated and return a new result.
# If it fail on recalculation will return current cached value (if it not more then 10 min old)
@cache.soft(ttl="10m", soft_ttl="7m")  
async def get(name):
    value = await api_call()
    return {"status": value}

Locked

Decorator that can help you to solve Cache stampede problem. Lock following function calls until the first one will be finished. This guarantees exactly one function call for given ttl.

:warning: **Warning: this decorator will not cache the result To do so you can combine this decorator with any cache decorator or use parameter lock=True with @cache()

from cashews import cache  # or: from cashews import locked

@cache.locked(ttl="10m")
async def get(name):
    value = await api_call()
    return {"status": value}

Rate limit

Rate limit for a function call - do not call a function if rate limit is reached

from cashews import cache  # or: from cashews import rate_limit

# no more than 10 calls per minute or ban for 10 minutes
@cache.rate_limit(limit=10, period=timedelta(minutes=1), ttl=timedelta(minutes=10))
async def get(name):
    return {"status": value}

Circuit breaker

Circuit breaker

from cashews import cache  # or: from cashews import circuit_breaker

@cache.circuit_breaker(errors_rate=10, period="1m", ttl="5m")
async def get(name):
    ...

Bloom filter (experimental)

Bloom filter

from cashews import cache

@cache.bloom(name="emails:{email}", capacity=10_000, false_positives=1)
async def email_exists(email):
    ...

for email in all_users_emails:
    await email_exists.set(email)

await email_exists("example@example.com")

Template Keys

Often, to compose a key, you need all the parameters of the function call. By default, Cashews will generate a key using the function name, module names and parameters

from cashews import cache

@cache(ttl=timedelta(hours=3))
async def get_name(user, *args, version="v1", **kwargs):
    ...

# a key template will be "__module__.get_name:user:{user}:{__args__}:version:{version}:{__kwargs__}"

await get_name("me", version="v2") 
# a key will be "__module__.get_name:user:me::version:v2"
await get_name("me", version="v1", foo="bar") 
# a key will be "__module__.get_name:user:me::version:v1:foo:bar"
await get_name("me", "opt", "attr", opt="opt", attr="attr")
# a key will be "__module__.get_name:user:me:opt:attr:version:v1:attr:attr:opt:opt"

The same with a class method

from cashews import cache

class MyClass:

    @cache(ttl="2h")
    async def get_name(self, user, version="v1"):
         ...

# a key template will be "__module__:MyClass.get_name:self:{self}:user:{user}:version:{version}

await MyClass().get_name("me", version="v2") 
# a key will be "__module__:MyClass.get_name:self:<__module__.MyClass object at 0x105edd6a0>:user:me:version:v1"

As you can see, there is an ugly reference to the instance in the key. That is not what we expect to see. That cache will not work properly. There are 3 solutions to avoid it.) define __str__ magic method in our class

class MyClass:

    @cache(ttl="2h")
    async def get_name(self, user, version="v1"):
         ...

    def __str__(self) -> str:
        return self._host

await MyClass(host="http://example.com").get_name("me", version="v2") 
# a key will be "__module__:MyClass.get_name:self:http://example.com:user:me:version:v1"
  1. Set a key template
class MyClass:

    @cache(ttl="2h", key="{self._host}:name:{user}:{version}")
    async def get_name(self, user, version="v1"):
         ...

await MyClass(host="http://example.com").get_name("me", version="v2") 
# a key will be "http://example.com:name:me:v1"
  1. Use noself or noself_cache if you want to exclude self from a key
from cashews import cache, noself, noself_cache

class MyClass:

    @noself(cache)(ttl="2h")
    async def get_name(self, user, version="v1"):
         ...

    @noself_cache(ttl="2h")  # for python <= 3.8
    async def get_name(self, user, version="v1"):
         ...
# a key template will be "__module__:MyClass.get_name:user:{user}:version:{version}

await MyClass().get_name("me", version="v2") 
# a key will be "__module__:MyClass.get_name:user:me:version:v1"

Sometimes you may need to format the parameters or define your own template for the key and Cashews allows you to do this:

@cache.failover(key="name:{user.uid}")
async def get_name(user, version="v1"):
    ...

await get_name(user, version="v2") 
# a key will be "fail:name:me"

@cache.hit(key="user:{token:jwt(user_name)}", prefix="new")
async def get_name(token):
    ...

await get_name(token) 
# a key will be "new:user:alex"

from cashews import default_formatter, cache

@default_formatter.register("upper")
def _upper(value):
    return value.upper()

@default_formatter.type_format(Decimal)
def _decimal(value: Decimal) -> str:
    return value.quantize(Decimal("0.00"))


@cache(key="price-{item.price}:{item.currency:upper}")
async def get_price(item):
    ...

await get_name(item) 
# a key will be "price-10.00:USD"

Cache invalidation

Cache invalidation - one of the main Computer Science well known problem. That's why ttl is a required parameter for all cache decorators.

Sometimes, you want to invalidate cache after some action is triggered. Consider this example:

from datetime import timedelta

from cashews import cache

@cache(ttl=timedelta(days=1))
async def user_items(user_id, fresh=False):
    ...

@cache(ttl=timedelta(hours=3))
async def items(page=1):
    ...

@cache.invalidate("module:items:page:*")  # or: @cache.invalidate(items)
@cache.invalidate(user_items, {"user_id": lambda user: user.id}, defaults={"fresh": True})
async def create_item(user):
   ...

Here, cache for user_items and items will be invalidated every time create_item is called.

Cache invalidation on code change

Often, you may face a problem with invalid cache after code is changed. For example:

@cache(ttl=timedelta(days=1), key="user:{user_id}")
async def get_user(user_id):
    return {"name": "Dmitry", "surname": "Krykov"}

Then, returned value was changed to:

-    return {"name": "Dmitry", "surname": "Krykov"}
+    return {"full_name": "Dmitry Krykov"}

Since function returning a dict, there is no way simple way to automatically detect that kind of cache invalidity

One way to solve the problem is to add a prefix for this cache:

@cache(ttl=timedelta(days=1), prefix="v2")
async def get_user(user_id):
    return {"full_name": "Dmitry Krykov"}

but it is so easy to forget to do it...

The best defense against this problem is to use your own datacontainers, like dataclasses, with defined __repr__ method. This will add distinctness and cashews can detect changes in such structures automatically by checking object representation.

from dataclasses import dataclass

from cashews import cache

@dataclass
class User:
    name: str
    surname: str

# or define your own class with __repr__ method

class User:
    
    def __init__(self, name, surname):
        self.name, self.surname = name, surname
        
    def __repr__(self):
        return f"{self.name} {self.surname}"

# Will detect changes of a structure
@cache(ttl=timedelta(days=1), prefix="v2")
async def get_user(user_id):
    return User("Dima", "Krykov")

Detect the source of a result

Decorators give us a very simple API but also make it difficult to understand where result is coming from - cache or direct call.

To solve this problem cashews has context_cache_detect context manager:

from cashews import context_cache_detect

with context_cache_detect as detector:
    response = await decorated_function()
    keys = detector.get()
print(keys)
# >>> {"my:key": [{"ttl": 10, "name": "simple", "backend": "redis"}, ], "fail:key": [{"ttl": timedelta(hours=10), "exc": RateLimit}, "name": "fail", "backend": "mem"],}

or you can use CacheDetect class:

from cashews import CacheDetect

cache_detect = CacheDetect()
await func(_from_cache=cache_detect)
assert cache_detect.keys == {}

await func(_from_cache=cache_detect)
assert len(cache_detect.keys) == 1

A simple middleware to use it in a web app:

@app.middleware("http")
async def add_from_cache_headers(request: Request, call_next):
    with context_cache_detect as detector:
        response = await call_next(request)
        if detector.keys:
            key = list(detector.keys.keys())[0]
            response.headers["X-From-Cache"] = key
            expire = await cache.get_expire(key)
            response.headers["X-From-Cache-Expire-In-Seconds"] = str(expire)
            if "exc" in detector.keys[key]:
                response.headers["X-From-Cache-Exc"] = str(detector.keys[key]["exc"])
    return response

Middleware

Cashews provide the interface for a "middleware" pattern:

import logging
from cashews import cache

logger = logging.getLogger(__name__)


async def logging_middleware(call, *args, backend=None, cmd=None, **kwargs):
    key = args[0] if args else kwargs.get("key", kwargs.get("pattern", ""))
    logger.info("=> Cache request: %s ", cmd, extra={"command": cmd, "cache_key": key})
    return await call(*args, **kwargs)


cache.setup("mem://", middlewares=(logging_middleware, ))

Development

Tests

To run tests you can use tox:

pip install tox
tox -e py  // tests for inmemory backend 
tox -e py-diskcache  // tests for diskcache backend 
tox -e py-redis  // tests for redis backend  - you need to run redis 
tox -e py-integration  // tests for integrations with aiohttp and fastapi 

tox // to run all tests for all python that is installed on your machine

Or use pytest, but 2 tests always fail, it is OK:

pip install .[tests,redis,diskcache,speedup] fastapi aiohttp requests

pytest // run all tests with all backends   
pytest -m "not redis" // all tests without tests for redis backend

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cashews-4.5.1.tar.gz (52.9 kB view hashes)

Uploaded source

Built Distribution

cashews-4.5.1-py3-none-any.whl (64.4 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page