Skip to main content

cache tools with async power

Project description

CASHEWS 🥔

Async cache utils with simple api to build fast and reliable applications

pip install cashews

Why

Cache plays significant role in modern applications and everybody wanna use all power of async programming and cache.. There are a few advance techniques with cache and async programming that can help you to build simple, fast, scalable and reliable applications. Caches

Features

  • Decorator base api, just decorate and play
  • Cache invalidation by time, 'ttl' is a required parameter to avoid storage overflow and endless cache
  • Support Multi backend (Memory, Redis)
  • Can cache any objects securely with pickle (use hash key).
  • Simple configuring and API
  • cache invalidation avtosystem and API
  • Cache usage detection API
  • Client Side cache
  • Stats for usage

API

Usage

Configure

Cache object is a single object that can be configured in one place by url::

from cashews import cache

cache.setup("redis://0.0.0.0/?db=1&create_connection_timeout=0.5&safe=0&hash_key=my_sicret&enable=1")
or
cache.setup("redis://0.0.0.0/", db=1, create_connection_timeout=0.5, safe=False, hash_key=b"my_key", enable=True)
or
cache.setup("mem://") # for inmemory cache

if you dont like global objects or prefer more manageable way you can work with cache class

from cashews import Cache

cache = Cache()
cache.setup("mem://?size=500")

You can disable cache by 'enable' parameter:

cache.setup("mem://?size=500", enable=False)
cache.setup("redis://redis/0?enable=1")
cache.setup("redis://redis?enable=True")

Also read about dynamic disabling at simple cache section

Backends

Memory

Store values in a dict, have 2 strategies to expire keys: deferred task to remove key, can overload loop by big amount of async tasks, that's why use strategy with storing expiration time is prefer This strategy check expiration on 'get' and periodically purge expired keys Also size of memory cache limit with size parameter (default 1000):

cache.setup("mem://?size=500")
cache.setup("mem://?check_interval=10&size=10000") # using strategy with expiration store, we increase check_interval be

Redis

Required aioredis package Store values in a redis key-value storage. Use 'safe' parameter to avoid raising any connection errors, command will return None in this case. This backend use pickle to store values, but the cashes can store values with sha1 keyed hash. So you should set 'hash_key' parameter to protect your application from security vulnerabilities. You can set parameters for redis pool by backend setup
Also if you would like to use client side cache set client_side=True

cache.setup("redis://0.0.0.0/?db=1&minsize=10&safe=1&hash_key=my_secret")
cache.setup("redis://0.0.0.0/", db=1, password="my_pass", create_connection_timeout=0.1, safe=0, hash_key="my_secret", client_side=True)

Simple cache

Typical cache strategy: execute, store and return cached value till expiration::

from cashews import cache
from datetime import timedelta

@cache(ttl=timedelta(hours=3))
async def long_running_function(arg, kward):
    ...

Fail cache

Return cache result (at list 1 call of function call should be succeed) if call raised one of the given exceptions,

from cashews import cache  # or from cashews import fail

@cache.fail(ttl=timedelta(hours=2))
async def get(name):
    value = await api_call()
    return {"status": value}

Hit cache

Cache call results and drop cache after given numbers of call 'cache_hits'

from cashews import cache  # or from cashews import hit

@cache.hit(ttl=timedelta(hours=2), cache_hits=100, update_before=2)
async def get(name):
    ...

Performance downgrade detection

Trace time execution of target and throw exception if it downgrade to given condition

from cashews import cache   # or from cashews import perf

@cache.perf(ttl=timedelta(hours=2))
async def get(name):
    value = await api_call()
    return {"status": value}

Locked

Decorator that can help you to solve Cache stampede problem (https://en.wikipedia.org/wiki/Cache_stampede), Lock following function calls till first one will be finished Can guarantee that one function call for given ttl

from cashews import cache  # or from cashews import locked

@cache.locked(ttl=timedelta(minutes=10))
async def get(name):
    value = await api_call()
    return {"status": value}

Early

Cache strategy that try to solve Cache stampede problem (https://en.wikipedia.org/wiki/Cache_stampede), With a hot cache recalculate a result in a background Warning! Not good at cold cache

from cashews import cache  # or from cashews import early

@cache.early(ttl=timedelta(minutes=10), early_ttl=timedelta(minutes=7))  # if you call this function after 7 min, cache will be updated in a backgound 
async def get(name):
    value = await api_call()
    return {"status": value}

Rate limit

Rate limit for function call. Do not call function if rate limit is reached, and call given action

from cashews import cache  # or from cashews import rate_limit

# no more then 10 calls per minute or ban for 10 minutes
@cache.rate_limit(limit=10, period=timedelta(minutes=1), ttl=timedelta(minutes=10))
async def get(name):
    return {"status": value}

Circuit breaker

Circuit breaker

from cashews import cache  # or from cashews import rate_limit

@cache.circuit_breaker(errors_rate=10, period=timedelta(minutes=1), ttl=timedelta(minutes=5))
async def get(name):
    ...

Basic api

There are 13 basic methods to work with key-storage:

from cashews import cache

cache.setup("mem://")

await cache.set(key="key", value={"any": True}, expire=60, exist=None)  # -> bool
await cache.get("key")  # -> Any
await cache.get_many("key1", "key2")
await cache.incr("key") # -> int
await cache.delete("key")
await cache.expire("key", timeout=10)
await cache.get_expire("key")  # -> int seconds to expire
await cache.ping(message=None)  # -> bytes
await cache.clear()
await cache.is_locked("key", wait=60)  # -> bool
async with cache.lock("key", expire=10):
   ...
await cache.set_lock("key", value="value", expire=60)  # -> bool
await cache.unlock("key", "value")  # -> bool

Invalidation

Cache invalidation - on of the main Computer Science well known problem. That's why ttl is a required parameter for all cache decorators Another strategy to cache invalidation implement in next api:

from cashews import cache
from datetime import timedelta

@cache(ttl=timedelta(days=1))
async def user_items(user_id, fresh=False):
    ...

@cache(ttl=timedelta(hours=3))
async def items(page=1):
    ...

@cache.invalidate("module:items:page:*")  # the same as @cache.invalidate(items)
@cache.invalidate(user_items, {"user_id": lambda user: user.id}, defaults={"fresh"; True})
async def create_item(user):
   ...

Also you may face problem with invalid cache arising on code changing. For example we have:

@cache(ttl=timedelta(days=1))
async def get_user(user_id):
    return {"name": "Dmitry", "surname": "Krykov"}

Than we did changes

-    return {"name": "Dmitry", "surname": "Krykov"}
+    return {"full_name": "Dmitry Krykov"}

There is no way simple way to automatically detect that kind of cache invalidity, because it is a dict. Сertainly we can add prefix for this cache:

@cache(ttl=timedelta(days=1), prefix="v2")
async def get_user(user_id):
    return {"full_name": "Dmitry Krykov"}

but usually we forget to do it... The best defense against such errors is to use objects like dataclasses for operating with structures, it adds distinctness and cashews can detect changes in this structure automatically by checking representation (repr) of object. So you can you use your own datacontainer with defined __repr__ method that rise AttributeError:

from dataclasses import dataclass

@dataclass()
class User:
    name: str
    surname: str
# OR
class User:

    def __init__(self, name, surname):
        self.name, self.surname = name, surname

    def __repr__(self):
        return f"{self.name} {self.surname}"

# Will detect changes of structure
@cache(ttl=timedelta(days=1), prefix="v2")
async def get_user(user_id):
    return User("Dima", "Krykov")

##Detect source of a result Decorators give to us very simple api but it makes difficult to understand what led to this result - cache or direct call To solve this problem cashews have a next API:

from cashews import context_cache_detect

context_cache_detect.start()
response = await decorated_function()
keys = context_cache_detect.get()
print(keys)
# >>> {"key": [{"ttl": 10}, ], "fail_key": [{"ttl": timedelta(hours=10), "exc": RateLimit}]}

# OR
from cashews import CacheDetect

cache_detect = CacheDetect()
await func(_from_cache=cache_detect)
assert cache_detect.get() == {}

await func(_from_cache=cache_detect)
assert len(cache_detect.get()) == 1

You can use it in your web app:

@app.middleware("http")
async def add_from_cache_headers(request: Request, call_next):
    context_cache_detect.start()
    response = await call_next(request)
    keys = context_cache_detect.get()
    if keys:
        key = list(keys.keys())[0]
        response.headers["X-From-Cache"] = key
        expire = await mem.get_expire(key)
        if expire == -1:
            expire = await cache.get_expire(key)
        response.headers["X-From-Cache-Expire-In-Seconds"] = str(expire)
        if "exc" in keys[key]:
            response.headers["X-From-Cache-Exc"] = str(keys[key]["exc"])
    return response

https://www.datadoghq.com/blog/how-to-monitor-redis-performance-metrics/

  • Invalidate without scan (index?)
  • Cache strategy based on history of execution (fail too match - add fail cache, too friquent - add cache )

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cashews-1.9.0.tar.gz (35.6 kB view details)

Uploaded Source

Built Distribution

cashews-1.9.0-py3-none-any.whl (44.8 kB view details)

Uploaded Python 3

File details

Details for the file cashews-1.9.0.tar.gz.

File metadata

  • Download URL: cashews-1.9.0.tar.gz
  • Upload date:
  • Size: 35.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.3

File hashes

Hashes for cashews-1.9.0.tar.gz
Algorithm Hash digest
SHA256 739a34adf65ff14bb8975feb126ed8e592472148fa41597015423ad2d07cbe62
MD5 ab25c5a75cbfe5291e02ec7f3d0018e4
BLAKE2b-256 17f38e61e9560d557e5a284748e320e4e210c4ef417be989a1a7ea74e74b99b4

See more details on using hashes here.

File details

Details for the file cashews-1.9.0-py3-none-any.whl.

File metadata

  • Download URL: cashews-1.9.0-py3-none-any.whl
  • Upload date:
  • Size: 44.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.3

File hashes

Hashes for cashews-1.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 05b498c8fc919de30e813218d21225b2dcfb5e30e2bfd36f0fcaf435b5725ac3
MD5 bbc5553862aacd2a5f5613a3a0213258
BLAKE2b-256 f2d62765cbcaac3ed875a3eedacc833306852c7e31078a8805006be184e941eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page