Skip to main content

causal-learn Python Package

Project description

causal-learn: Causal Discovery for Python

Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art causal discovery algorithms, which is a Python translation and extension of Tetrad.

The package is actively being developed. Feedbacks (issues, suggestions, etc.) are highly encouraged.

Package Overview

Our causal-learn implements methods for causal discovery:

  • Constraint-based causal discovery methods.
  • Score-based causal discovery methods.
  • Causal discovery methods based on constrained functional causal models.
  • Hidden causal representation learning.
  • Granger causality.
  • Multiple utilities for building your own method, such as independence tests, score functions, graph operations, and evaluations.

Install

Causal-learn needs the following packages to be installed beforehand:

  • python 3
  • numpy
  • networkx
  • pandas
  • scipy
  • scikit-learn
  • statsmodels
  • pydot

(For visualization)

  • matplotlib
  • graphviz

To use causal-learn, we could install it using pip:

pip install causal-learn

Documentation

Please kindly refer to causal-learn Doc for detailed tutorials and usages.

Running examples

For search methods in causal discovery, there are various running examples in the ‘tests’ directory, such as TestPC.py and TestGES.py.

For the implemented modules, such as (conditional) independent test methods, we provide unit tests for the convenience of developing your own methods.

Benchmarks

For the convenience of our community, CMU-CLeaR group maintains a list of benchmark datasets including real-world scenarios and various learning tasks. Please refer to the following links:

Please feel free to let us know if you have any recommendation regarding causal datasets with high-quality. We are grateful for any effort that benefits the development of causality community.

Contribution

Please feel free to open an issue if you find anything unexpected. And please create pull requests, perhaps after passing unittests in 'tests/', if you would like to contribute to causal-learn. We are always targeting to make our community better!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

causal-learn-0.1.2.7.tar.gz (139.0 kB view hashes)

Uploaded source

Built Distribution

causal_learn-0.1.2.7-py3-none-any.whl (173.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page