Skip to main content

causal-learn Python Package

Project description

causal-learn: Causal Discovery in Python

Causal-learn (documentation, paper) is a python package for causal discovery that implements both classical and state-of-the-art causal discovery algorithms, which is a Python translation and extension of Tetrad.

The package is actively being developed. Feedbacks (issues, suggestions, etc.) are highly encouraged.

Package Overview

Our causal-learn implements methods for causal discovery:

  • Constraint-based causal discovery methods.
  • Score-based causal discovery methods.
  • Causal discovery methods based on constrained functional causal models.
  • Hidden causal representation learning.
  • Permutation-based causal discovery methods.
  • Granger causality.
  • Multiple utilities for building your own method, such as independence tests, score functions, graph operations, and evaluations.

Install

Causal-learn needs the following packages to be installed beforehand:

  • python 3 (>=3.7)
  • numpy
  • networkx
  • pandas
  • scipy
  • scikit-learn
  • statsmodels
  • pydot

(For visualization)

  • matplotlib
  • graphviz

To use causal-learn, we could install it using pip:

pip install causal-learn

Documentation

Please kindly refer to causal-learn Doc for detailed tutorials and usages.

Running examples

For search methods in causal discovery, there are various running examples in the ‘tests’ directory, such as TestPC.py and TestGES.py.

For the implemented modules, such as (conditional) independent test methods, we provide unit tests for the convenience of developing your own methods.

Benchmarks

For the convenience of our community, CMU-CLeaR group maintains a list of benchmark datasets including real-world scenarios and various learning tasks. Please refer to the following links:

Please feel free to let us know if you have any recommendation regarding causal datasets with high-quality. We are grateful for any effort that benefits the development of causality community.

Contribution

Please feel free to open an issue if you find anything unexpected. And please create pull requests, perhaps after passing unittests in 'tests/', if you would like to contribute to causal-learn. We are always targeting to make our community better!

Running Tetrad in Python

Although causal-learn provides python implementations for some causal discovery algorithms, there are currently a lot more in the classical Java-based Tetrad program. For users who would like to incorporate arbitrary Java code in Tetrad as part of a Python workflow, we strongly recommend considering py-tetrad. Here is a list of reusable examples of how to painlessly benefit from the most comprehensive Tetrad Java codebase.

Citation

Please cite as:

@article{zheng2024causal,
  title={Causal-learn: Causal discovery in python},
  author={Zheng, Yujia and Huang, Biwei and Chen, Wei and Ramsey, Joseph and Gong, Mingming and Cai, Ruichu and Shimizu, Shohei and Spirtes, Peter and Zhang, Kun},
  journal={Journal of Machine Learning Research},
  volume={25},
  number={60},
  pages={1--8},
  year={2024}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

causal_learn-0.1.4.4.tar.gz (151.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

causal_learn-0.1.4.4-py3-none-any.whl (191.8 kB view details)

Uploaded Python 3

File details

Details for the file causal_learn-0.1.4.4.tar.gz.

File metadata

  • Download URL: causal_learn-0.1.4.4.tar.gz
  • Upload date:
  • Size: 151.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.7

File hashes

Hashes for causal_learn-0.1.4.4.tar.gz
Algorithm Hash digest
SHA256 82e65ba9593a31b0a33b5f313e5b824c0763de3a8da2a062458f6c12bd46017e
MD5 09d5d385a199a0018a473376f79a7596
BLAKE2b-256 9642b12bdecdff8e5097e2d325a26d897e15945e4956c34822fc81d6b479a89b

See more details on using hashes here.

File details

Details for the file causal_learn-0.1.4.4-py3-none-any.whl.

File metadata

  • Download URL: causal_learn-0.1.4.4-py3-none-any.whl
  • Upload date:
  • Size: 191.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.7

File hashes

Hashes for causal_learn-0.1.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 e3d51dae578b58d6e4bba0544a18817dc63f574fa1e0120019febe7fee90baff
MD5 5c786c681f2abaf96bbc61444d82a87c
BLAKE2b-256 12f6f5505b4bc5ae941741345b53751694fb6b1e680c6381600414e4de6423a0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page