Skip to main content

Ceviche

Project description

ceviche Build Status

Electromagnetic Simulation Tools + Automatic Differentiation. Code for paper Forward-Mode Differentiation of Maxwell's Equations.

What is ceviche?

ceviche provides two core electromagnetic simulation tools for solving Maxwell's equations:

  • finite-difference frequency-domain (FDFD)

  • finite-difference time-domain (FDTD)

Both are written in numpy / scipy and are compatible with the HIPS autograd package, supporting forward-mode and reverse-mode automatic differentiation.

This allows you to write code to solve your E&M problem, and then use automatic differentiation on your results.

As a result, you can do gradient-based optimization, sensitivity analysis, or plug your E&M solver into a machine learning model without having to go through the tedious process of deriving your derivatives by hand.

Examples

There is a comprehensive ceviche tutorial available at this link with several ipython notebook examples:

  1. Running FDFD simulations in ceviche.
  2. Performing inverse design of a mode converter.
  3. Adding fabrication constraints and device parameterizations.
  4. Inverse design of a wavelength-division multiplexer and advanced topics.

There are also a few examples in the examples/* directory.

Installation

There are many ways to install ceviche.

The easiest is by

pip install ceviche

But to install from a local copy, one can instead do

git clone https://github.com/twhughes/ceviche.git
pip install -e ceviche
pip install -r ceviche/requirements.txt

from the main directory.

Alternatively, just download it:

git clone https://github.com/twhughes/ceviche.git

and then import the package from within your python script

import sys
sys.path.append('path/to/ceviche')

Package Structure

Ceviche

The ceviche directory contains everything needed.

To get the FDFD and FDTD simulators, import directly from ceviche import fdtd, fdfd_ez, fdfd_hz

To get the differentiation, import from ceviche import jacobian.

constants.py contains some constants EPSILON_0, C_0, ETA_0, Q_E, which are needed throughout the package

utils.py contains a few useful functions for plotting, autogradding, and various other things.

optimizers.py contains optimizer functions for doing inverse design.

viz.py are functions that help with plotting fields and sructures.

modes.py contains a mode sorter (WIP) that can be used to create waveguide mode profiles for the simulation, for example.

Examples

There are many demos in the examples directory, which will give you a good sense of how to use the package.

Tests

Tests are located in tests. To run, cd into tests and

python -m unittest

to run all or

python specific_test.py

to run a specific one. Some of these tests involve visual inspection of the field plots rather than error checking on values.

To run all of the gradient checking functions, run

chmod +x test/test_all_gradients.sh
tests/test_all_gradients.sh

Credits

If you use this for your research or work, please cite

@article{hughes2019forward,
  title={Forward-Mode Differentiation of Maxwell’s Equations},
  author={Hughes, Tyler W and Williamson, Ian AD and Minkov, Momchil and Fan, Shanhui},
  journal={ACS Photonics},
  volume={6},
  number={11},
  pages={3010--3016},
  year={2019},
  publisher={ACS Publications}
}

Our logo was created by @nagilmer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for ceviche, version 0.1.2
Filename, size File type Python version Upload date Hashes
Filename, size ceviche-0.1.2-py3-none-any.whl (32.6 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size ceviche-0.1.2.tar.gz (29.6 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page