Skip to main content

Visualization toolkit for Chainer

Project description

An unofficial visualization tool for chainer, inspired by tensorboard. The toolkit allows visualization of log from chainer.extensions.LogReport.

Example usage:

model = L.Classifier(MyModel())

optimizer = chainer.optimizers.Adam()
optimizer.setup(model)

train = create_my_data()
train_iter = chainer.iterators.SerialIterator(train, batchsize)

updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (epochs, 'epoch'), out='path/to/output')

trainer.extend(extensions.LogReport(log_name='my_log_data')))
# optional; allows visualization of parameters
trainer.extend(extensions.ParameterStatistics(model))

# Run the training
trainer.run()

and point chainerboard at the output log file to start local http server.

chainerboard path/to/output/my_log_name

now open http://localhost:6006/ to view the log.

Warning

The author of this project is not a professional web programmer. Never use the project on remote server since it may impose serious security risks.

Development

To setup development environment:

pip install -r requirements.txt

For testing,

tox

Build document

python setup.py build_sphinx

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for chainerboard, version 0.1.5
Filename, size File type Python version Upload date Hashes
Filename, size chainerboard-0.1.5.tar.gz (850.0 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page