Skip to main content

Charm4py Parallel Programming Framework

Project description

https://github.com/charmplusplus/charm4py/actions/workflows/charm4py.yml/badge.svg?event=push https://readthedocs.org/projects/charm4py/badge/?version=latest https://img.shields.io/pypi/v/charm4py.svg

Charm4py (Charm++ for Python -formerly CharmPy-) is a distributed computing and parallel programming framework for Python, for the productive development of fast, parallel and scalable applications. It is built on top of Charm++, a C++ adaptive runtime system that has seen extensive use in the scientific and high-performance computing (HPC) communities across many disciplines, and has been used to develop applications that run on a wide range of devices: from small multi-core devices up to the largest supercomputers.

Please see the Documentation for more information.

Short Example

The following computes Pi in parallel, using any number of machines and processors:

from charm4py import charm, Chare, Group, Reducer, Future
from math import pi
import time

class Worker(Chare):

    def work(self, n_steps, pi_future):
        h = 1.0 / n_steps
        s = 0.0
        for i in range(self.thisIndex, n_steps, charm.numPes()):
            x = h * (i + 0.5)
            s += 4.0 / (1.0 + x**2)
        # perform a reduction among members of the group, sending the result to the future
        self.reduce(pi_future, s * h, Reducer.sum)

def main(args):
    n_steps = 1000
    if len(args) > 1:
        n_steps = int(args[1])
    mypi = Future()
    workers = Group(Worker)  # create one instance of Worker on every processor
    t0 = time.time()
    workers.work(n_steps, mypi)  # invoke 'work' method on every worker
    print('Approximated value of pi is:', mypi.get(),  # 'get' blocks until result arrives
          'Error is', abs(mypi.get() - pi), 'Elapsed time=', time.time() - t0)
    exit()

charm.start(main)

This is a simple example and demonstrates only a few features of Charm4py. Some things to note from this example:

  • Chares (pronounced chars) are distributed Python objects.

  • A Group is a type of distributed collection where one instance of the specified chare type is created on each processor.

  • Remote method invocation in Charm4py is asynchronous.

In this example, there is only one chare per processor, but multiple chares (of the same or different type) can exist on any given processor, which can bring flexibility and also performance benefits (like dynamic load balancing). Please refer to the documentation for more information.

Contact

We would like feedback from the community. If you have feature suggestions, support questions or general comments, please visit the repository’s discussion page or email us at <charm@cs.illinois.edu>.

Main author at <jjgalvez@illinois.edu>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

charm4py-1.1.tar.gz (353.3 kB view details)

Uploaded Source

Built Distributions

charm4py-1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

charm4py-1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

charm4py-1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (1.8 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

charm4py-1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

charm4py-1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

charm4py-1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (1.8 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

charm4py-1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

charm4py-1.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

charm4py-1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

charm4py-1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

charm4py-1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

charm4py-1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

charm4py-1.1-cp313-cp313-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

charm4py-1.1-cp313-cp313-macosx_10_13_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

charm4py-1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

charm4py-1.1-cp312-cp312-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

charm4py-1.1-cp312-cp312-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

charm4py-1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

charm4py-1.1-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

charm4py-1.1-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

charm4py-1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

charm4py-1.1-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

charm4py-1.1-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

charm4py-1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

charm4py-1.1-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

charm4py-1.1-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

charm4py-1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

charm4py-1.1-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

charm4py-1.1-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

charm4py-1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

charm4py-1.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file charm4py-1.1.tar.gz.

File metadata

  • Download URL: charm4py-1.1.tar.gz
  • Upload date:
  • Size: 353.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for charm4py-1.1.tar.gz
Algorithm Hash digest
SHA256 caad1fd50b50003a3f8b93dac03b80ece094eca9aed57f78e04ce68731efa807
MD5 6628e7d5aef6cc49060dc1b6e285e2d8
BLAKE2b-256 561f31d3ee475834500e9cf8ed35b69e4f42f0baa8cf8fae83618a677a2c6be2

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7abaf32ad4ff3eaddcffbb18db6f5fe89d2f90ddfaa2d52c43defa65dfdb134
MD5 77cc6f27b9501023c1f797c8492444b2
BLAKE2b-256 693261445d9a0e50371bfd81bb420e2f7330f307f54703f3cbc7b542828dcdce

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c99194b4b77d823f6d02f9e60f5f8d7d804b14a453cc2e8ad4c53c171e9f4291
MD5 618a9f0081763fbd67a73a324a1ea682
BLAKE2b-256 95f94be994a793ae251bd6d441844cb7eb4d6252e5f08dce34a6b8e6dd143e72

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7727d39842cce109bfceb1c5a7f5522e28f007cf754d13e877cc35896e8dae87
MD5 b36491b27acdcd4158159561d27c24ce
BLAKE2b-256 1dc28f7880c1cead4e65974f25cb42bd19597913ee56e0d6696125a07d188600

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9852d75318ef727c1327bbabd623b1a54a3cd0f2147f7b474ed726904a30ab74
MD5 01814e00f19294edd75d601db9b18206
BLAKE2b-256 1d5ed5d048a60c82f445212a5ccb2b977729ff5ac983f24a90f98afb9c4f04b4

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54d09f611f19126da63f11582eb4378fb8e3862ff517d28c2c03df02fbb24cc2
MD5 e43624f4024ac8ea63a5c8a1536edc4d
BLAKE2b-256 596ea370c28d0721829e523a53ac2210e6ca4a7ce3350457aef09ac7f9d2d0c2

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8e092b3d8993790fb51155d63116d3d8e60a0fa978b0f427c7158ea292f493aa
MD5 b51134f842f6406e7c4196d9487f76d6
BLAKE2b-256 62ddd8db9e167b5f6eca3958ef8b8d3fc6c78b9a94d647554458b0a8b783ae9a

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a87928467c6bfe75fd59cad5eeffc4abc0c8bdc2fa860bc5be0fbf8491574d82
MD5 012ef66addc52d3fa4661cabdb89fae4
BLAKE2b-256 1c6c3a07ba02bad54c68839cf7e369de25ee7c19b91b66425ccd89b175f7aea1

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34dd909a369ffb21d63cd8cf19a5277613f51b56ce27e9823c159bb1c6ea41ba
MD5 6fb018bd433d1ed11fbf6b127b5a6946
BLAKE2b-256 0b08c40cdbee9836cdef9ea8e837b62e3b94b9c55697cc1802002d638db41b3d

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13087e9057ca9116a41d7a8a71bd1b717c2626c6a02b222d2fee37cae88f6570
MD5 ec491f929a545b93b4ae3d217db01e9b
BLAKE2b-256 db1919ee9038a0ae474e2bc8cc816671f8e9dd7387d953229293481ed3c7cbce

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 688af82ea62b41f94024af88a395da1b404b17afdae81ebbdfd2098daea2e942
MD5 cc9122ab08b10891f70665f7de55c224
BLAKE2b-256 431252f69816ac12a40ab8c6841aabdfdf237585d00e840e07acc34dc25366d5

See more details on using hashes here.

File details

Details for the file charm4py-1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22711f5b3e2031eae8aa7674d20ba195b8be3f5807755f54d227518652d6f2cd
MD5 32a720fcfb2eb77b20dc1aafd4f0e620
BLAKE2b-256 9dc1b64c1854e5b9f3286f386367ec32b57e30b73f4fb423ff7b77e7b65fd4c7

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 737880d28cc2aac8a86e6223d7abef6c77c884cf6cde718db543568d04a07300
MD5 66735eb23a446d7c171cef6ce5477e78
BLAKE2b-256 3750aeac4ab76e6f556f2fa5510afe669c3748b16b472a041acfbfa04d33c478

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1cdffffc7d18a54a1650b29867ad0e43878f183ef1a51c24deef3436cae6db71
MD5 06733d8ee6c721c13c0e451f6c7a18d0
BLAKE2b-256 efb554dfa9eeae09baaa9969bbd90139713a369cb42f418ed260e6bd85326802

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9e7563240253882318f7c6f3660c92da00f28bcb380cc9f27cf07c0ad18354f6
MD5 34bfcdb9eee5bdab8b011e1485497f27
BLAKE2b-256 66df249f8cddfa281350072eb4a20773582ce6400607f7786781e0c20504cfad

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ad7a1e896f7f1a661f345559597529138db8927aa8bec972cc62d0024f734bd
MD5 8e1b10944df3aae22c26d20aab4ca639
BLAKE2b-256 69a7883ffe6e6f58c4c6ecf02b768b490336b9f8b7a3cf67350a05238fc3afa9

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c81d9ff45d947e38db5ad688cad15bea1b9c4ec36780965614004e728436e52c
MD5 2ce9ef6f729ea225a7d43a3789635c87
BLAKE2b-256 a916b3912c94a2a9369d98f06e475c55116470625b72e09c43489a9ed3e8c29e

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1a589ba0a8b712855b9de9487ce297105a239946b56fdaca4918f6bd1226dbe
MD5 1fc5070177c42513c3b5affbddbc1302
BLAKE2b-256 bcf779921166d736f3e22ce4004792f7e36e99d7e7d2bdc6976df0bbcf4d55df

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1eff2336afc52885e6e0ec9499b331abd18e66bc654aba4d64e97909c61987a
MD5 f6a9a53f502e7dbae8af5ee38f448738
BLAKE2b-256 81918dac7ca62dbf0f0f1388640ec1be6e245b85ca90f10a0636f8605e353c81

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8271ff92b721dfbcc265bc73f48df08aa9b75da2c94b00fb12a98f7e7e8ddbbe
MD5 ef1360b464c078fa49519a983a953f24
BLAKE2b-256 6a236f593a2204702f0a1ef322b8d0d0f07276a65ce91fa0d6bb70cc6477d3a7

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02ae45a90ece636c31cde17541c82bf1b0fbfb1df40aeeee334133d49f259996
MD5 7f103f470f22c8c7f316acc843de79ba
BLAKE2b-256 e8e130bb225075eca94155d4fa2c9e0ed0faf83ed17461da5715a3de6d2e3507

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7775e85b796befa30c30e835bff43b97962505c3074e2bdd4ebf08f490c13e57
MD5 5221213f94b5c4246364c29cc20e4104
BLAKE2b-256 622b55f71176d538153693905f391c6f1ee78fc4c8d55bdbc165266409a29e97

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 252f7cff11dea9c3c6ce80ec30627584572d941ade625ba74f72c5b6e078b103
MD5 4a2caaca810dc4cbd0a77368b3e7df4b
BLAKE2b-256 1f75c2529453a09df81b7bc4319f709458df325f298d4481380a39f9cd3fccff

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec5b3b97da24157c59c377b25f60f01a64a0985ef2cc145e8ee0668f80cd3b84
MD5 2a3d7ae915f977da192576b0d16fcb57
BLAKE2b-256 c42ae4655560a062e2a4a511942a4447691c82cd69f370d95426523b130c77fd

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e160f3913ef93879f313c9807c2504228dbda48a56aad0780ed7d206984c769
MD5 601a7bdbbb2e40fcc8839802137e6e4a
BLAKE2b-256 298619d8db420b62415632848182b56de36a4686e7fc44f674bf87a339986244

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c0acb161950548e64b23a5ad940191011c5ec66507ccc4bb179988d8d3e9728d
MD5 9853625d543174a6250682a27a6c6ff0
BLAKE2b-256 e3194bd267536b22614a7e8f3b71311b12c41f4a90f4e4697adb286876e62ecc

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d480ebba377e2d95a93e318e22153c439f86759b3040a4efc1a3c929b765ce1
MD5 646cac175b6999395a539768cdaa7364
BLAKE2b-256 c646a26fca19f848cbf03982cfdd590b67c60bd859904cef081ea2ef79011c8a

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60bdbcdf61e678decb2ced02b18d95c1b5495828baee3bdf855b46312d05c615
MD5 937d556fdf618fea57d06b96c6863960
BLAKE2b-256 e1a357439761601fd4b299f8b87ac1d915ba7b11a71611ba2bca085436ec3ce3

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c93a4ac4230993001e5f2cbf5e7b50f60acd72134c052a63a2e8000377df494d
MD5 fa88f2e8d0f4b42a65dcfbb9c5cdac7a
BLAKE2b-256 d43aea4cbf88fd0ef9948b810fc1dd2e585e1c8d095c60b33e68907e71ea7866

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78512684e15a38a83410c1562143cf6d7175479e388e7b807e200fc63a65a1a5
MD5 b533d314658b17d210f2815989bd2007
BLAKE2b-256 223af57a1fcfeb555160bbedb9ca2d66d5ad686aa5374f220b27fdba562ea791

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81d91c41cb3955238c6bfa16bb55f5648914466cefce7d77ec2737e1d670a28e
MD5 0385e707c67a220853c62f3b3b73cc3a
BLAKE2b-256 ba122e4fdc2dc9f2f726aa7fa9e4ca7172fe677da5fae144b0b517dea6749fc3

See more details on using hashes here.

File details

Details for the file charm4py-1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for charm4py-1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27c620f874b9adcabf572aa676e1ad15345a917764fe396bba046d8adfe98d77
MD5 12322bfe48b7c3d1883f048580d237db
BLAKE2b-256 0b8e7bf62d5c785f546990c9c0969dc7fea7235bb6b5961feef4ee29f448928d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page