Skip to main content

Charm4py Parallel Programming Framework

Project description

https://travis-ci.com/UIUC-PPL/charm4py.svg?branch=master http://readthedocs.org/projects/charm4py/badge/?version=latest https://img.shields.io/pypi/v/charm4py.svg

Charm4py (Charm++ for Python -formerly CharmPy-) is a distributed computing and parallel programming framework for Python, for the productive development of fast, parallel and scalable applications. It is built on top of Charm++, a C++ adaptive runtime system that has seen extensive use in the scientific and high-performance computing (HPC) communities across many disciplines, and has been used to develop applications that run on a wide range of devices: from small multi-core devices up to the largest supercomputers.

Please see the Documentation for more information.

Short Example

The following computes Pi in parallel, using any number of machines and processors:

from charm4py import charm, Chare, Group, Reducer, Future
from math import pi
import time

class Worker(Chare):

    def work(self, n_steps, pi_future):
        h = 1.0 / n_steps
        s = 0.0
        for i in range(self.thisIndex, n_steps, charm.numPes()):
            x = h * (i + 0.5)
            s += 4.0 / (1.0 + x**2)
        # perform a reduction among members of the group, sending the result to the future
        self.reduce(pi_future, s * h, Reducer.sum)

def main(args):
    n_steps = 1000
    if len(args) > 1:
        n_steps = int(args[1])
    mypi = Future()
    workers = Group(Worker)  # create one instance of Worker on every processor
    t0 = time.time()
    workers.work(n_steps, mypi)  # invoke 'work' method on every worker
    print('Approximated value of pi is:', mypi.get(),  # 'get' blocks until result arrives
          'Error is', abs(mypi.get() - pi), 'Elapsed time=', time.time() - t0)
    exit()

charm.start(main)

This is a simple example and demonstrates only a few features of Charm4py. Some things to note from this example:

  • Chares (pronounced chars) are distributed Python objects.
  • A Group is a type of distributed collection where one instance of the specified chare type is created on each processor.
  • Remote method invocation in Charm4py is asynchronous.

In this example, there is only one chare per processor, but multiple chares (of the same or different type) can exist on any given processor, which can bring flexibility and also performance benefits (like dynamic load balancing). Please refer to the documentation for more information.

Contact

We would like feedback from the community. If you have feature suggestions, support questions or general comments, please visit our forum or emails us at <charm@cs.illinois.edu>, or

Main author at <jjgalvez@illinois.edu>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for charm4py, version 1.0
Filename, size File type Python version Upload date Hashes
Filename, size charm4py-1.0-cp27-cp27m-macosx_10_6_intel.whl (1.4 MB) File type Wheel Python version cp27 Upload date Hashes View
Filename, size charm4py-1.0-cp27-cp27m-manylinux1_x86_64.whl (1.6 MB) File type Wheel Python version cp27 Upload date Hashes View
Filename, size charm4py-1.0-cp27-cp27mu-manylinux1_x86_64.whl (1.6 MB) File type Wheel Python version cp27 Upload date Hashes View
Filename, size charm4py-1.0-cp34-cp34m-macosx_10_6_intel.whl (1.5 MB) File type Wheel Python version cp34 Upload date Hashes View
Filename, size charm4py-1.0-cp34-cp34m-manylinux1_x86_64.whl (1.7 MB) File type Wheel Python version cp34 Upload date Hashes View
Filename, size charm4py-1.0-cp34-cp34m-win_amd64.whl (963.8 kB) File type Wheel Python version cp34 Upload date Hashes View
Filename, size charm4py-1.0-cp35-cp35m-macosx_10_6_intel.whl (1.5 MB) File type Wheel Python version cp35 Upload date Hashes View
Filename, size charm4py-1.0-cp35-cp35m-manylinux1_x86_64.whl (1.7 MB) File type Wheel Python version cp35 Upload date Hashes View
Filename, size charm4py-1.0-cp35-cp35m-win_amd64.whl (964.2 kB) File type Wheel Python version cp35 Upload date Hashes View
Filename, size charm4py-1.0-cp36-cp36m-macosx_10_6_intel.whl (1.5 MB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size charm4py-1.0-cp36-cp36m-manylinux1_x86_64.whl (1.7 MB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size charm4py-1.0-cp36-cp36m-win_amd64.whl (967.9 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size charm4py-1.0-cp37-cp37m-macosx_10_6_intel.whl (1.5 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size charm4py-1.0-cp37-cp37m-manylinux1_x86_64.whl (1.7 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size charm4py-1.0-cp37-cp37m-win_amd64.whl (968.2 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size charm4py-1.0-py2.py3-none-win_amd64.whl (850.8 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size charm4py-1.0.tar.gz (3.4 MB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page