Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Mustache templating language renderer

Project description

PyPI version Build Status Coverage Status

A python implementation of the mustache templating language.

Why chevron?

I'm glad you asked!

chevron is fast

Chevron runs in less than half the time of pystache (Which is not even up to date on the spec). And in about 70% the time of Stache (A 'trimmed' version of mustache, also not spec compliant).

chevron is pep8

The flake8 command is run by travis to ensure consistency.

chevron is spec compliant

Chevron passes all the unittests provided by the spec (in every version listed below).

If you find a test that chevron does not pass, please report it.

chevron is Python 2 and 3 compatible

Python 2.6, 2.7, 3.2, 3.3, 3.4, 3.5, and 3.6 are all tested by travis.


Commandline usage: (if installed via pypi)

usage: chevron [-h] [-v] [-d DATA] [-p PARTIALS_PATH] [-e PARTIALS_EXT]
               [-l DEF_LDEL] [-r DEF_RDEL]

positional arguments:
  template              The mustache file

optional arguments:
  -h, --help            show this help message and exit
  -v, --version         show program's version number and exit
  -d DATA, --data DATA  The json data file
                        The directory where your partials reside
                        The extension for your mustache partials, 'mustache'
                        by default
  -l DEF_LDEL, --left-delimiter DEF_LDEL
                        The default left delimiter, "{{" by default.
  -r DEF_RDEL, --right-delimiter DEF_RDEL
                        The default right delimiter, "}}" by default.

Python usage with strings

import chevron

chevron.render('Hello, {{ mustache }}!', {'mustache': 'World'})

Python usage with file

import chevron

with open('file.mustache', 'r') as f:
    chevron.render(f, {'mustache': 'World'})

Python usage with unpacking

import chevron

args = {
  'template': 'Hello, {{ mustache }}!',

  'data': {
    'mustache': 'World'


chevron supports partials (via dictionaries)

import chevron

args = {
    'template': 'Hello, {{> thing }}!',

    'partials_dict': {
        'thing': 'World'


chevron supports partials (via the filesystem)

import chevron

args = {
    'template': 'Hello, {{> thing }}!',

    # defaults to .
    'partials_path': 'partials/',

    # defaults to mustache
    'partials_ext': 'ms',

# ./partials/ will be read and rendered

chevron supports lambdas

import chevron

def first(text, render):
    # return only first occurance of items
    result = render(text)
    return [ x.strip() for x in result.split(" || ") if x.strip() ][0]

def inject_x(text, render):
    # inject data into scope
    return render(text, {'x': 'data'})

args = {
    'template': 'Hello, {{# first}} {{x}} || {{y}} || {{z}} {{/ first}}!  {{# inject_x}} {{x}} {{/ inject_x}}',

    'data': {
        'y': 'foo',
        'z': 'bar',
        'first': first,
        'inject_x': inject_x



  • with git
$ git clone

or using submodules

$ git submodules add

Also available on pypi!

  • with pip
$ pip install chevron


  • get popular
  • have people complain
  • fix those complaints

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for chevron, version 0.13.1
Filename, size File type Python version Upload date Hashes
Filename, size chevron-0.13.1-py3-none-any.whl (11.2 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size chevron-0.13.1.tar.gz (9.1 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page