Skip to main content

Concept Hierarchies for Incremental and Active Learning

Project description

CHIA: Concept Hierarchies for Incremental and Active Learning

PyPI PyPI - License PyPI - Python Version Code Climate maintainability codecov

CHIA is a collection of methods and helper functions centered around hierarchical classification in a lifelong learning environment. It forms the basis for some of the experiments and tools developed at Computer Vision Group Jena.

Requirements

CHIA depends on:

  • python-configuration ~= 0.7
  • nltk ~= 3.5
  • imageio ~= 2.6
  • pillow ~= 7.1.0
  • gputil ~= 1.4.0
  • networkx ~= 2.4
  • numpy ~= 1.18.5
  • tensorflow-addons == 0.11.1
  • tensorflow == 2.3.0

Optional dependencies:

  • tables ~= 3.6.1
  • pandas ~= 1.0.4
  • sacred ~= 0.8.1
  • pyqt5 ~= 5.15.0
  • scikit-image ~= 0.17.2
  • scikit-learn ~= 0.23.1
  • scipy == 1.4.1
  • matplotlib ~= 3.2.1

Installation

To install, simply run:

pip install chia

or clone this repository, and run:

pip install -U pip setuptools
python setup.py develop

We also include the shell script quick-venv.sh, which creates a virtual environment and install CHIA for you.

Getting Started

To run the example experiment which makes sure that everything works, use the following command:

python examples/experiment.py examples/configuration.json

After a few minutes, the last lines of output should look like this:

[DEBUG] [ExceptionShroud]: Leaving exception shroud without exception
[SHUTDOWN] [Experiment] Successful: True

Citation

If you use CHIA for your research, kindly cite:

Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (pp. 3-16). Springer, Cham.

You can refer to the following BibTeX:

@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chia-2.0rc14.tar.gz (66.1 kB view details)

Uploaded Source

Built Distribution

chia-2.0rc14-py3-none-any.whl (87.8 kB view details)

Uploaded Python 3

File details

Details for the file chia-2.0rc14.tar.gz.

File metadata

  • Download URL: chia-2.0rc14.tar.gz
  • Upload date:
  • Size: 66.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for chia-2.0rc14.tar.gz
Algorithm Hash digest
SHA256 467ec2bec0772d754186238787ecc8478fe5db6bddb37802b4fd23030f8c9df6
MD5 8d8c2dbb91f391983391e8ae25b3f625
BLAKE2b-256 19946a77ae8cd89d91fa023a54eedbca07b0ffefa762a2da903c71cb1df547ec

See more details on using hashes here.

File details

Details for the file chia-2.0rc14-py3-none-any.whl.

File metadata

  • Download URL: chia-2.0rc14-py3-none-any.whl
  • Upload date:
  • Size: 87.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for chia-2.0rc14-py3-none-any.whl
Algorithm Hash digest
SHA256 3dd926a348666f3fe33fb5f3075b3c0ff46c7440f9e418e5f85749787fd2e73b
MD5 3639a59842772ee009b7abb3af4d9726
BLAKE2b-256 efe647b3e56ca676cb767a149deed5c6f09326b572c0aa3b65abe422c4c1c1e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page