Skip to main content

Image utility library for Deep Learning

Project description

chitra

What is chitra?

chitra (चित्र) is an image utility library for Deep Learning tasks. (It is not image-processing library)

chitra reduces image data loading boilerplates for classification and object-detection.

It can also generate bounding-boxes from the annotated dataset.

If you have more use cases please raise an issue with the feature you want.

Installation

Using pip (recommended)

pip install -U chitra

From source

git clone https://github.com/aniketmaurya/chitra.git
cd chitra
pip install -e .

Usage

Loading data for image classification

import numpy as np
import tensorflow as tf
import chitra
from chitra.dataloader import Clf, show_batch
import matplotlib.pyplot as plt
clf_dl = Clf()
data = clf_dl.from_folder(cat_dog_path, target_shape=(224, 224))

clf_dl.show_batch(8, figsize=(8,8))
CLASSES ENCODED: {'cat': 0, 'dog': 1}

png

for e in data.take(1):
    image = e[0].numpy().astype('uint8')
    label = e[1].numpy()
plt.imshow(image)
plt.show()

png

Visualization

Image annotation

Thanks to fizyr keras-retinanet.

from chitra.visualization import draw_annotations

labels = np.array([label])
bbox = np.array([[30, 50, 170, 190]])
label_to_name = lambda x: 'Cat' if x==0 else 'Dog'
draw_annotations(image, ({'bboxes': bbox, 'labels':labels,}), label_to_name=label_to_name)
plt.imshow(image)
plt.show()

png

Image datagenerator

Dataset class provides the flexibility to load image dataset by updating components of the class.

Components of Dataset class are:

  • image file generator
  • resizer
  • label generator
  • image loader

These components can be updated with custom function by the user according to their dataset structure. For example the Tiny Imagenet dataset is organized as-

train_folder/
.....folder1/
    .....file.txt
    .....folder2/
           .....image1.jpg
           .....image2.jpg
                     .
                     .
                     .
           ......imageN.jpg


The inbuilt file generator search for images on the folder1, now we can just update the image file generator and rest of the functionality will remain same.

Dataset also support progressive resizing of images.

from chitra.datagenerator import Dataset
from glob import glob

Updating component

# data_path = '/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train'
ds = Dataset(data_path)
# it will load the folders and NOT images
ds.filenames[:3]
No item present in the image size list





['/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train/n03584254',
 '/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train/n02403003',
 '/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train/n02056570']
def load_files(path):
    return glob(f'{path}/*/images/*')

def get_label(path):
    return path.split('/')[-3]

ds.update_component('get_filenames', load_files)
ds.filenames[:3]
get_filenames updated with <function load_files at 0x7fe0a5aa9560>
No item present in the image size list





['/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train/n03584254/images/n03584254_251.JPEG',
 '/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train/n03584254/images/n03584254_348.JPEG',
 '/data/aniket/tiny-imagenet/data/tiny-imagenet-200/train/n03584254/images/n03584254_465.JPEG']

Progressive resizing

image_sz_list = [(28, 28), (32, 32), (64, 64)]

ds = Dataset(data_path, image_size=image_sz_list)
ds.update_component('get_filenames', load_files)
ds.update_component('get_label', get_label)


print()
# first call to generator
for img, label in ds.generator():
    print('first call to generator:', img.shape)
    break

# seconds call to generator
for img, label in ds.generator():
    print('seconds call to generator:', img.shape)
    break

# third call to generator
for img, label in ds.generator():
    print('third call to generator:', img.shape)
    break

get_filenames updated with <function load_files at 0x7fe0a5aa9560>
get_label updated with <function get_label at 0x7fe14838ab00>

first call to generator: (28, 28, 3)
seconds call to generator: (32, 32, 3)
third call to generator: (64, 64, 3)

tf.data support

Creating a tf.data dataloader was never as easy as this one liner. It converts the Python generator into tf.data.Dataset for a faster data loading, prefetching, caching and everything provided by tf.data.

image_sz_list = [(28, 28), (32, 32), (64, 64)]

ds = Dataset(data_path, image_size=image_sz_list)
ds.update_component('get_filenames', load_files)
ds.update_component('get_label', get_label)

dl = ds.get_tf_dataset()

for e in dl.take(1):
    print(e[0].shape)

for e in dl.take(1):
    print(e[0].shape)

for e in dl.take(1):
    print(e[0].shape)
get_filenames updated with <function load_files at 0x7fe0a5aa9560>
get_label updated with <function get_label at 0x7fe14838ab00>
(28, 28, 3)
(32, 32, 3)
(64, 64, 3)

Learner

The Learner class inherits from tf.keras.Model, it contains everything that is required for training.

from chitra.learner import Learner
from chitra.datagenerator import Dataset
from PIL import Image
ds = Dataset(cat_dog_path, image_size=(224,224))
learner = Learner(ds, tf.keras.applications.MobileNetV2)
WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.
learner.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
mobilenetv2_1.00_224 (Functi (None, None, None, 1280)  2257984   
_________________________________________________________________
global_average_pooling2d_1 ( (None, 1280)              0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 1280)              0         
_________________________________________________________________
output (Dense)               (None, 1)                 1281      
=================================================================
Total params: 2,259,265
Trainable params: 2,225,153
Non-trainable params: 34,112
_________________________________________________________________
learner.compile(loss=tf.keras.losses.BinaryCrossentropy(), metrics=['binary_accuracy'])
learner.cyclic_fit(epochs=10,
                   batch_size=1,
                   lr_range=(0.01, 0.01)
                  )
Returning the last set size which is: (224, 224)
Epoch 1/10
8/8 [==============================] - 1s 109ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 2/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 109ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 3/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 112ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 4/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 111ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 5/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 108ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 6/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 108ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 7/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 109ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 8/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 115ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 9/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 116ms/step - loss: 7.7125 - binary_accuracy: 0.5000
Epoch 10/10
Returning the last set size which is: (224, 224)
8/8 [==============================] - 1s 117ms/step - loss: 7.7125 - binary_accuracy: 0.5000





<tensorflow.python.keras.callbacks.History at 0x7fb21487d2d0>

Model Visualization

from chitra.learner import InterpretModel
learner = Learner(ds, tf.keras.applications.Xception, include_top=True)
model_interpret = InterpretModel(False, learner)
image = ds[1][0].numpy().astype('uint8')
image = Image.fromarray(image)
model_interpret(image)
Returning the last set size which is: (224, 224)
index: 285

png

IMAGENET_LABELS[285]
'Egyptian Mau'
image = ds[3][0].numpy().astype('uint8')
image = Image.fromarray(image)
print(IMAGENET_LABELS[208])
model_interpret(image)
Labrador Retriever
Returning the last set size which is: (224, 224)
index: 208

png

Utils

Limit GPU memory or enable dynamic GPU memory growth for Tensorflow

from chitra.utils import limit_gpu, gpu_dynamic_mem_growth

# limit the amount of GPU required for your training
limit_gpu(gpu_id=0, memory_limit=1024*2)
No GPU:0 found in your system!
gpu_dynamic_mem_growth()
No GPU found on the machine!

Contributing

Contributions of any kind are welcome. Please check the Contributing Guidelines before contributing.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chitra-0.0.18.tar.gz (29.6 kB view details)

Uploaded Source

Built Distribution

chitra-0.0.18-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file chitra-0.0.18.tar.gz.

File metadata

  • Download URL: chitra-0.0.18.tar.gz
  • Upload date:
  • Size: 29.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for chitra-0.0.18.tar.gz
Algorithm Hash digest
SHA256 aa936401915e2bde530473e51619560253391b5f380005a2681470c1972c2da9
MD5 9cb939ffd5df24e777eef879c1f5bcf9
BLAKE2b-256 463a25383996b7d9a17d24964a80c3601622e7e38b1cea9b364d2ee32976b78f

See more details on using hashes here.

File details

Details for the file chitra-0.0.18-py3-none-any.whl.

File metadata

  • Download URL: chitra-0.0.18-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for chitra-0.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 8b44c156df2a14e59a963513cbcbaa5c4609fe8889403919719421ea3901107d
MD5 5c59cc97ea3d8f9a92fbe66d35c43ae6
BLAKE2b-256 f55b6843330d8afc920ed157c88b0a5db7714fdef691328191489fd5d966d248

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page